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Abstract—Colon cancer causes deaths of about half a million people every year. Common method of its detection is histopathological

tissue analysis, which, though leads to vital diagnosis, is significantly correlated to the tiredness, experience, and workload of the

pathologist. Researchers have been working since decades to get rid of manual inspection, and to develop trustworthy systems for

detecting colon cancer. Several techniques, based on spectral/spatial analysis of colon biopsy images, and serum and gene analysis

of colon samples, have been proposed in this regard. Due to rapid evolution of colon cancer detection techniques, a latest review of

recent research in this field is highly desirable. The aim of this paper is to discuss various colon cancer detection techniques. In this

survey, we categorize the techniques on the basis of the adopted methodology and underlying data set, and provide detailed

description of techniques in each category. Additionally, this study provides an extensive comparison of various colon cancer detection

categories, and of multiple techniques within each category. Further, most of the techniques have been evaluated on similar data set to

provide a fair performance comparison. Analysis reveals that neither of the techniques is perfect; however, research community is

progressively inching toward the finest possible solution.

Index Terms—Colon biopsy, colon cancer, texture, hyperspectral, gene, blood serum analysis

Ç

1 INTRODUCTION

LARGE intestine performs wide variety of functions,
ranging from breakage of large molecules to nutrients

and water absorption [1], [2]. Colon is one major constituent
of large intestine, and its cancer is a major reason of deaths
in western and industrialized world [3]. There are many
reasons of colon cancer, like, chain smoking, increasing age
such as age above 50 years, family history of colon cancer,
low intake of fruits, and heavy intake of red meat and fats
[4], [5].

Traditionally, colon cancer is diagnosed using micro-

scopic analysis of histopathological colon samples. In such

an examination, pathologists observe the colon samples

under microscope to detect malignancy, and assign cancer

grade depending upon the level of organizational changes

they observe in tissues. But, the manual examination has a

few limitations. First, it is subjective because quantitative

measures such as cancer grades/stages mainly depend on

the visual assessment of pathologists. Second, it has inter/

intra observer variation in grading [6], [7], [8], [9]. Such

vulnerabilities in the manual process result in need of

automatic colon cancer diagnostic techniques [10], [11],

which could provide second opinion to the pathologists in

the short run and could serve as an independent trust-
worthy system for detection of cancer in the long run.

Automatic detection of colon cancer has two major
directions: segmentation and classification. In segmenta-
tion, heterogeneous colon samples are segregated into
homogenous regions based on spatial distribution of tissues
in the images. Next, normal and malignant labels are
assigned to the regions based on certain features. In the
literature, several approaches exist for medical image
segmentation such as pixel based, region based, and graph
based. Pixel-based methods divide image pixels into
different clusters based upon their colors using various
approaches like watershed transform [12], clustering [13],
[14], adaptive segmentation [15], and thresholding [16].
Region-based segmentation methodologies use similar
approach, but they maintain connectivity between pixels
of similar clusters. Well-known techniques of this category
include splitting and merging [17], and region growing [18].
Graph-based techniques [19], [20] assume image pixels as
nodes of a graph, and weight between them as similarity
between pixels. Segmentation then involves graph parti-
tioning into subgraphs while minimizing cost functions. In
classification, colon samples are divided into normal
and malignant categories based upon certain features.
Classification and segmentation may be followed by cancer
grading step, in which quantitative cancer grades are
assigned to the samples depending upon certain quantita-
tive measures.

Automated diagnostic systems have been proposed for
cancer detection in various body parts such as brain [21],
[22], [23], [24], [25], breast [26], [27], [28], [29], [30], cervical
[31], prostate [32], [33], and lungs [34]. In this connection,
several techniques have also been proposed for colon cancer
detection. A subset of these techniques, known as texture-
analysis-based techniques, have exploited the noteworthy
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contrast between texture of normal and malignant parts of
colon biopsy images for cancer detection [35], [36], [37], [38],
[39], [40], [41]. Several statistical and morphological
features, which have proven to be good discriminators in
the past [42], [43], have been investigated in these studies.
There are a few other techniques, called object-oriented
(OO) texture analysis-based techniques, which incorporate
background knowledge of normal and malignant tissue
organization into the diagnostic process [44], [45], [46], [47],
[48], [49], [50], [51], [52]. Focus of a few studies is to perform
hyperspectral analysis on colon biopsy images, and classify
samples into different classes [53], [54], [55], [56], [57], [58],
[59]. Another interesting and quite promising method of
colon cancer detection is simultaneous analysis of thou-
sands of human genes to detect genetic alterations
responsible for cancer [60], [61], [62], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73]. Some researchers have
also exploited the variation in chemical composition and
resulting Raman spectra of normal and malignant serum for
cancer diagnosis [74], [75], [76], [77], [78], [79], [80], [81],
[82], [83]. Another method of colon cancer detection is to
simulate the neural activity happening in the brain by
analyzing organization of colon biopsy images [84], [85].

In 2009, Demir and Yener [86] reported a survey in
which a few issues involved in automated colon cancer
diagnosis based on histopathological images have been
discussed. However, this paper does not cover colon cancer
detection techniques in detail. Further, extensive research
has been carried out in the field of automated colon cancer
diagnosis in the last two decades, but so far, a comprehen-
sive survey in this field has not been reported. Therefore, a
latest review of the research in the field of colon cancer
diagnosis is highly desirable. This work, thus, fulfills the
basic need of researchers working in this field by providing
an extensive discussion on classical as well as contempor-
ary techniques. Hence, this paper serves a needy purpose in
this connection.

In this paper, we divide colon cancer detection techni-
ques into five major categories. In each category, detailed
explanation of most of the techniques along with a healthy
discussion on their merits and demerits is provided.
Further, performance comparison of different categories
and of several techniques within each category is presented
in detail. The novel contribution of this study is the
implementation and evaluation of colon cancer detection
techniques on same data set.

Remainder of this paper is organized as follows: Section 2
highlights organization of colon tissues. Section 3 presents a
detailed insight into existing colon cancer detection techni-
ques. Section 4 provides a performance review of the
techniques. Section 5 evaluates the performance of various
colon cancer detection techniques on prepared data sets,
and Section 6 concludes the paper.

2 BENIGN AND MALIGNANT TISSUE ORGANIZATION

Normal colon tissues have well-defined organizational
structure. However, this arrangement varies in case of
cancer. Variation usually depends upon the cancer stage.
Initial cancer stages deform the cells very little. Therefore,
are harder to detect. On the other hand, advanced stages
significantly deform the cells, thereby making their detec-
tion easier.

Fig. 1 presents normal and malignant colon tissues.
Deformation introduced by cancer is clearly visible in
Fig. 1b, but tissues are organized in normal colon sample
(see Fig. 1a).

Fig. 1c presents three constituents (epithelial cells,
nonepithelial cells, and lumen) of normal colon tissue.
Epithelial cells usually surround lumen and form glandular
structure, whereas nonepithelial cells, called stroma, lie in
between these structures. There are five stages of colon
cancer(0,I-IV) according to National Cancer Institute [87].
These stages are similar to the Duke’s stages (0,A-D) [88],
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Fig. 1. (a) Normal and (b) malignant colon tissues, and (c) constituents of normal colon tissue.



[89]. Stage 0 is the earliest stage in which cancer just starts to
develop. It is still restricted to the innermost lining of colon.
In Stage I, cancer has reached to the middle layer of colon.
In Stage II, cancer has reached beyond the middle layer.
Cancer is called Stage III if it reaches lymph nodes, and is
found in at least three of them. Stage IV is the final stage,
wherein cancer has reached other body parts such as lungs
and liver. Fig. 2 demonstrates these stages.

3 COLON CANCER SEGMENTATION AND

CLASSIFICATION TECHNIQUES

Generally, there are five major categories of colon cancer

detection techniques depending upon the underlying data

set and adopted methodology. These categories include

spectral analysis, texture analysis, gene analysis, serum

analysis, and OO texture analysis. Texture, hyperspectral,
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Fig. 2. Different stages of colon cancer: (a) Stage 0, (b) Stage I, (c) Stage II, (d1, d2) Stage III, and (e) Stage IV.



and OO texture analysis-based techniques work on images.
Therefore, these techniques have been referred as image
analysis-based techniques in this survey. A few techniques,
which work on colon biopsy images but are not well
established, have been discussed in the miscellaneous
category. Gene and serum analysis-based techniques
analyze physical sample for cancer detection, therefore,
have been named physical sample-based colon cancer
detection techniques. A broad level categorization of these
techniques is presented in Fig. 3, and the following text
explains these techniques in detail.

3.1 Texture Analysis-Based Techniques

Texture is a combination of repeated patterns with regular/
irregular frequency [90]. There is a significant variation in
the texture of normal and malignant colon tissues. A few
researchers have exploited this variation in their respective
studies, and achieved good classification on colon biopsy
data sets. Entropy and correlation have been commonly
used to quantize texture. However, several other para-
meters are also in practice. Detailed information on textural
features may be found in the classical book of digital image
processing [91]. Well-known texture analysis-based colon
cancer detection techniques have been summarized in the
following text.

Esgiar et al. [35] proposed a promising method of colon
cancer detection by using textural features. In their work,
original colon biopsy images of size 512� 512 are further
divided into four subimages of size 256� 256, and
the subimages having little tissue content are excluded.
Gray-level cooccurrence matrix (GLCM) is then calculated
for each subimage. Normalized GLCM is used to determine
textural features of angular second moment, contrast,
correlation, inverse difference moment, dissimilarity, and
entropy by using (1)-(6), respectively,
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where Pij is the ijth entry in the normalized GLCM matrix.
i and j are the integer pixel numbers along its rows and
columns, which are quantized up to level R. �r and �c are
the mean of row sums and column sums, respectively.
Likewise, �r and �c are the standard deviations of row sums
and column sums, respectively. The reported classification
accuracy is 90.2 percent for a combination of correlation and
entropy by using linear discriminate analysis (LDA)
classifier. Esgiar et al. [36] further extended their previous
work, and employed geometric and texture features.
Geometric features comprise features of shape and orienta-
tion. Texture features encompass energy, inertia and
homogeneity, and are calculated from GLCM of the image.
The reported classification accuracy for geometric and
texture features is 80 and 90 percent, respectively.

Esgiar et al. improved their previous work [35] by
adding image fractal dimensions to the feature set [37].
Concept of statistical scaling is used in calculating fractal
dimensions, i.e., in a self-similar structure, a relationship
“Df” exists between scale factor of box size and number of
boxes to which structure can be divided. Scale factor r is
varied (3; . . . ; 51), and the number of grid boxes B(r)
containing the structure is counted. Relationship “Df” is
presented in the following equation:

Df ¼
logðBðrÞÞ
logð1=rÞ ; ð7Þ

where Df function is plotted for each image, and a
regression line is fitted to the plotted points. Fractal
dimension is calculated from the slope of the regression
line. K-nearest neighbor (KNN) for k ¼ 2, and LDA are used
as classifiers with leave one out (LOO) approach of data
formulation. Fractal analysis in combination with correla-
tion and entropy improved accuracy up to 94.1 percent. An
extended version of this study has been presented in
another research paper [38].

Further, Kalkan et al. [39] combined texture and
structural features to classify colon samples into normal,
precancerous (adenomatous and inflamed) and malignant
classes. In this work, 2,000 patches per class have been
used. A total of 1,108 texture features are computed from
each patch by evaluating 32 bins color channel histograms
of R, G, B, H, S, V color components of raw image.
Further, each patch is divided into 16 subpatches, and the
following structural features are calculated per subpatch:
the number of nuclei per tissue area, the individual and
the pairwise ratio of each of stroma, cellular, and lumen to
the tissue area. Further, forward feature selection strategy
is applied to select meaningful features. Logistic regression
classifier with equal class priorities is applied for
classification, and 77.29, 82.25, 76.08, and 66.86 percent
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Fig. 3. Top-level breakdown of colon cancer classification/segmenta-
tion techniques.



classification accuracy is reported for adenomatous,
malignant, inflamed, and normal classes.

Recently, Jiao et al. [40] proposed a simple and compu-
tationally tractable method of automatic colon cancer
detection. In this work, colon biopsy images are initially
converted to gray-scale images. Statistical features of mean
and variance are computed form the images. Likewise,
texture features of angular second moment, contrast, correla-
tion, and entropy are computed from GLCM matrix in four
different orientations of � ¼ 00; 450; 900; 1350. SVM with
threefold cross-validation is employed to identify normal
and malignant images. In testing phase, performance of each
new feature is calculated by adding it to previous features.
Results revealed that the composite feature vector compris-
ing 18 features is more discriminative compared to indivi-
dual features. Moreover, Ng et al. [41] carried out a research
study with an aim to determine relationship between
changes happening in the texture of malignant colon images
and the survival rate of patients. In this work, texture features
of standard deviation, entropy, uniformity, kurtosis, and
skewness were extracted from pixel distribution histograms
of contrast material-enhanced CT images. Kaplan-Meier
analysis was performed to determine the relationship
between these features and 5-year survival rate. The Cox
proportional hazards model was used to assess indepen-
dence of texture features from stage. This texture analysis
process was followed up on the same cancer patients until
their death. Analysis revealed that Kaplan-Meier survival
plots for texture features are significantly different from each
other. Results also revealed that features are independent
from the cancer stage, and can be used to model malignancy
in all the cancer stages. Further, results showed that fine
texture features are associated with poorer 5-year overall
survival rate for the patients of colon cancer.

3.2 OO Texture Analysis-Based Techniques

These techniques exploit background knowledge about size
and spatial distribution of colon tissue components for
segmentation and classification of colon biopsy images.
These techniques have been further divided into segmenta-
tion and classification techniques.

3.2.1 Object-Oriented Texture Analysis-Based

Segmentation Techniques

Initially, OO texture analysis was premeditated for segmen-
tation of colon biopsy images. In this connection, object-
oriented segmentation (OOSEG) [44] is the first OO texture
analysis-based segmentation technique that comprises three
well-defined phases, namely, object definition, texture
definition, and segmentation. In object definition phase, k-
means [92] is applied to divide image pixels into three
clusters depending upon color intensities of tissue compo-
nents such as purple-colored nuclei, white-colored lumen
and epithelial cells, and pink-colored stroma. Circular
primitives (example given in Fig. 4) are then located using
a circle fitting process, summarized in Algorithm 1.
Primitives of each cluster are further divided into two
categories depending upon user-defined threshold, thereby
resulting in six object types. In texture definition phase, two
features called object size uniformity and object spatial
distribution uniformity are calculated for each image pixel by

considering six object types, thereby resulting in 12 features
for each pixel. Segmentation algorithm initializes, grows, and
finally merges seeds. In initialization phase, pixels having
values of all the uniformity measures less than correspond-
ing threshold (sum of mean and standard deviation) are
marked as seeds. In seed growing, initial regions (seeds) are
grown until they span the entire image. In region merging,
two features, namely percentage area of each object type in a
region, and percentage of combined areas of different objects
that belong to particular cluster type in the region are
calculated. Regions are merged if they are adjacent, and
euclidean distance between their features is less than a merge
threshold. Region merging phase merges small regions, and
yields final segmentation results.

Algorithm 1. Circle fitting algorithm.

For a given set of pixels P.
Step 1: Assign each particular pixel xi to the largest

possible circle that includes this particular pixel xi
and that is formed by only the pixels xj 2 P.

Step 2: Form connected components C ¼ C1; C2; . . . ; CN
from the pixels such that the connected

component Ck consists of the pixels that are

assigned to the circle k.

Step 3: Eliminate the connected components smaller than
an area threshold.

Step 4: For each component Ck, recursively call Steps 1

and 2 considering only the pixels of this

connected component (i.e., in Step 1, P will be a

set of pixels belonging to the component Ck) until

there is no change in the pixels of the component.

(There will be no change when a component is

circular.)

OOSEG [44] though produces reasonable results has a
few limitations. For instance, it needs manual adjustment of
parameters for each test image. Therefore, Tosun et al.
proposed a new technique with an aim to identify a set of
parameter values applicable to all image instances. In this
work [45], object locating process is similar to OOSEG [44],
but calculations in later stages are performed with reference
to objects rather than pixels. In feature extraction phase, a
set of twelve features as used in [44] is calculated for each
object. Next, Voronoi diagram is constructed on the
centroids of all the objects to determine initial seeds. Any
two adjacent objects are grouped if euclidean distance
between them is smaller than a predefined similarity
threshold. Later, groups having number of objects larger
than a threshold are declared seeds. Seeds are iteratively
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Fig. 4. (a) Purple cluster of a colon biopsy image, and (b) identified
primitives.



grown until they cover the entire image. Final regions
comprise objects. Therefore, Voronoi diagram of the objects
is drawn to get pixel-based regions.

Demir et al. [46] proposed a valuable colon biopsy image
segmentation technique. In this work, circle fitting process
is similar to OOSEG [44] with one exception that only
purple and white clusters are used to locate nucleus and
lumen objects, respectively. Next, an object-graph [93] is
constructed on these objects. Edges are assigned between
each lumen object and its N closest lumen and N closest
nucleus neighbors. For each lumen object L, features having
information about areas, length of edges between L and its
nucleus and lumen neighbors are extracted by considering
neighbors within a circular window around L. These
features are further used by the k-means algorithm to
segregate lumen objects into “gland” and “nongland”
classes. Objects of “gland” class are treated as initial seeds.
Region growing process involves another object-graph
that is constructed on nucleus objects. Starting from the
initial lumen seeds, more lumen objects are added to the
graph until an edge of the nucleus graph is encountered.
Edges of the nucleus graph are used to stop region growing
because glands are usually encircled by the nucleus objects,
and encountering a nucleus object means that gland
boundary is reached. In the end, false gland elimination,
which has been proven to be effective in [94] and [95], is
applied to remove false glands.

Tosun et al. [47] further improved OOSEG by employing
graphs for quantifying spatial relationship between cytolo-
gical tissue components. In the first step of this work,
previously proposed methods of circle fitting [44], and
graph generation [46], [93] are employed. In the second
step, graph-edge runs are calculated. Graph-edge runs are
based on the idea of gray-level run-length matrices [96].
Graph-edge run is a path that starts from an initial node,
and contains all nodes reachable with a set of edges of the
same type. For calculation of gray-level run-length matrix
(GRLM), a circular window is hypothesized at center of a
node, and then breadth first search is used to compute path
for each particular edge type that lies within the window. In
feature extraction phase, four features, namely, short-path
emphasis (SPE), long-path emphasis (LPE), edge type
nonuniformity (ETN), and path length nonuniformity
(PLN) are computed. ETN and PLN help in determining
the effect of edge type and path length distribution on
texture, and occupy least values when the runs are
uniformly distributed over all edge types and path lengths.
Segmentation totally relies on objects instead of pixels, and
comprises three steps: seed determination, region growing,
and region merging. A window is centered on current
object, and accumulated GRLM of the encircled object is
calculated, which is used in feature calculation of current
object. Initial seeds are determined by disconnecting pairs
of adjacent objects having intermediate distance greater
than a distance threshold, and removing components
having lesser number of objects than a predefined thresh-
old. Objects are merged to the seeds if they are adjacent, and
euclidean distance between their features is smaller than
merge threshold. Finally, Voronoi diagram of the objects is
constructed to demarcate final region boundaries.

Simsek et al. [48] introduced cooccurrence features to
quantify spatial relationship between objects in a colon
biopsy image. Circular objects are located by using circle
fitting algorithm [44]. A cooccurrence matrix is calculated
for each object by placing a circular window on the object,
and measuring the number of times objects of one type
cooccur with objects of another type at a given distance d.
Twenty-four cooccurrence features are extracted from the
cooccurrence matrix. In this work, segmentation has been
posed as a graph partitioning problem. Random objects
are picked in different iterations to generate graphs.
Segmentation is achieved by using these graphs. Finally,
multiple results are combined to obtain final segmentation.

Recently, Rathore et al. [49] proposed a robust segmenta-
tion technique called modified object-oriented segmentation
(MOSEG). In MOSEG, the underlying method of segmenta-
tion is similar to OOSEG [44] with a few enhancements.
First, system parameters, which are set manually in OOSEG
[44], are found separately for images captured at different
magnification factors using genetic algorithm (GA). Second,
epithelial cells, which were modeled as circles in previous
techniques, are modeled as ellipses. Third, nearly elliptic
shapes are also located in the images by using Algorithm 2
to cater blur. They validated their segmentation results at
four different magnification factors. Algorithm 2 signifi-
cantly increases the number of objects located in images
compared to Algorithm 1, as presented in Fig. 5.

Algorithm 2. Ellipse fitting algorithm.

For a given set of pixels P for a given cluster L.

Step 1: Convert the set of pixels P into connected

components C ¼ C1; C2; . . . ; CN .

Eliminate the connected components smaller

than an area threshold A.

Step 2: Find ellipses in the ith connected component

Ci (Step 2.A - Step 2.E).
Step 2.A: Generate four patterns of simulated

ellipses EP1ð0oÞ; EP2ð45oÞ; EP3ð90oÞ; EP4ð135oÞ
starting with CurrentMajorAxis and

CurrentMinorAxis.

(CurrentMajorAxis ¼MaxMajorAxis and

CurrentMinorAxis ¼MaxMinorAxis in start).

Step 2.B: Locate elliptic primitives

EP1; EP2; EP3; EP4 in the current connected
component Ci one by one.

Step 2.C: Mark the pixels P0 corresponding to

elliptic primitives.

Step 2.D: Find remaining pixels P� ¼ P� P0.

Step 2.E: Decrement axes values
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Fig. 5. (a) Cluster, objects located by using (b) circle fitting algorithm
(943 pixels), and (c) ellipse fitting algorithm (1,359 pixels).



(CurrentMajorAxis and CurrentMinorAxis) by 1

and continue (Step 2.A) finding ellipses in

remaining pixels P� until following criteria’s
meet:

1. Axes values reach minimum limit.

(MinMajorAxis and MinMinorAxis).

2. No unassigned pixels are left, i.e., P * ¼ [].

Step 3: Continue (Step 2) finding ellipses in ðiþ 1Þth
connected component Ciþ1:

3.2.2 Object-Oriented Texture Analysis-Based

Classification Techniques

Like segmentation, OO texture analysis-based techniques
work equally well for classification of colon biopsy images.
In this context, Altunbay et al. [50] proposed a novel texture
features-based technique. In this work, previously proposed
methods of circle fitting [44], and graph generation [46],
[47], [48] are employed. A few structural features such as
degree, average clustering coefficient (CC), and diameter
are computed from the object-graph. Seven types of degrees
are defined for each node. One degree type considers all
edges, whereas remaining six degree types consider edges
of particular colors. Averages of seven degrees for all the
nodes constitute seven degree-based features for a single
graph (image). CC is a measure of the connectivity in the
neighborhood of a node. Four CCs are computed; first CC is
computed by catering all nodes within the neighborhood,
whereas remaining three are computed by considering
nodes of unique colors. The clustering coefficient of a node
n is defined as follows:

CCn ¼
2En

dnðdn � 1Þ ; ð8Þ

where dn is the number of neighbors within the neighbor-
hood, and En is the number of existing edges. It is
noteworthy that En may be much lesser than dn. Diameter
is the longest of the shortest paths between any pair of
nodes. Seven different diameters are calculated. The first
diameter is computed by considering all edges, and the
other six are computed by considering one particular edge
type at a time. These 18 features are used to classify given
samples by using linear SVM.

Recently, Ozdemir et al. [51] presented a resampling-
based Markovian model for classification of colon biopsy

images into normal, low grade and high grade cancer. In

this work, perturbed samples (images) are generated from

the original image. First-order discrete Markov model is

employed to determine the posteriori probabilities of all the

classes (normal, low grade, high grade) for a given

perturbed sample. A class having highest posteriori prob-

ability is assigned to the perturbed sample. Finally, majority

voting is employed to combine the classes of individual

perturbed samples, and to determine the class of the original

test sample. Moreover, Ozdemir and Demir. [52] presented

another method of colon cancer detection based on object-

graphs. Their idea is to make reference graphs [46], [47], [50]

of a few images of normal glands, and then search query

graphs of test images in the reference graphs. Query graphs

are searched in the reference graphs by placing nucleus

node of a query graph on each node of the reference graph.

Three most similar graphs are found, and then based on the

degree of similarity sample type is identified.

3.3 Hyperspectral Analysis-Based Techniques

Hyperspectral analysis-based techniques operate on se-

lected spectral bands of colon biopsy images, and identify

normal and malignant tissues. Hyperspectral data of colon

biopsy images is collected by using hyperspectral imaging

setup that consists of tuned light source [97].
In one of the earliest hyperspectral analysis-based

techniques, the authors [53] segmented the hyperspectral

colon biopsy images by using wavelet features, and provided

quite promising visual results of segmentation. However,

major focus of their research was the classification of

hyperspectral colon biopsy images. In this connection,

the authors [54] have accomplished classification of colon

biopsy images using multiple kernels of SVM. Hyperspectral

image cubes having size 1;024� 1;024� 20 of colon tissues

are acquired from hematoxylin and eosin (H&E) stained

microarray. Overall process comprises four steps: preproces-

sing, segmentation, feature extraction, and classification. In

preprocessing, FlexIA, a variant of independent component

analysis, is applied for dimensionality reduction. In segmen-

tation phase, extracted components are fed as input to the k-

means clustering to produce 1;024� 1;024 labeled images for

each cube. In feature extraction, features given in Table 1 are

extracted for 16� 16 image patches, and for resolutions up to

256� 256 to capture local as well as global details. Detailed
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information about morphological features can be found in a
classical book of image processing [91].

As a result, 4,096 features for each image cube and a total
of 45,056 features for 11 selected cubes have been extracted.
Thirty thousand features have been used for training and
the remaining features have been used for testing.
Gaussian, linear, and polynomial kernels of SVM have
been used as classifiers. Results reveal clear superiority of
Gaussian kernel with an accuracy of 87.5 percent.

In 2006, Masood et al. [55] have used GLCM and
morphological features for colon tissue classification. Three
distinct phases of their technique are segmentation, feature
extraction, and classification. In segmentation phase,
dimensionality of 3D cubes of hyperspectral image data is
reduced using FlexICA. Imaging data is then divided into
four clusters of nuclei, cytoplasm, glands, and stroma by
using k-means. Two experiments are conducted. In the first
experiment, morphological features of shape, size, orienta-
tion, and other geometrical attributes are extracted from
4,096 patches (size 16� 16) of four clusters. Features are
then calculated by doubling the resolution up to five scales
and then concatenating these features. Principal component
analysis (PCA) [98] and LDA [99] are used to characterize
images on the basis of morphological features, and a
maximum of 84 percent accuracy is achieved. The second
experiment focuses on 64� 64 image block of each sample.
Energy, contrast, and homogeneity are calculated from
GLCM of the block by exploiting all possible options of
distance d ¼ 1; 2 and angle � ¼ 00; 450; 900; 1350. Four-
directional features are then concatenated, thereby resulting
in an overall feature vector of size 24. LOO approach
coupled with polynomial SVM is employed for classifica-
tion. The reported classification accuracy is 90 percent.

Another example of hyperspectral analysis of colon
biopsy samples is composite index (CI) measure-based
SVM classification technique [56]. In this technique, spatial
analysis on one selected spectral band of hyperspectral colon
biopsy data is performed using circular local binary patterns
(CLBP). CLBP(r, b) features are computed for 33 different
combinations of radius r ¼ 2; 3; . . . ; 12 and number of
neighbors b ¼ 8; 12; 16. For finding discriminative CLBP
features, three measures are used based on separability and
compactness of clustering. These measures are classification
scatter index (C), rand index (R), and silhouette index (S). C is
a measure of compactness of clusters formed by a set of
features. It is calculated using following equation:

C ¼
Xm

j¼1

pj�j; ð9Þ

where pj and �j, respectively, are the probabilities and
standard deviations of the jth class.

S is a measure of similarity of each point to the points of
its own cluster and to the points of other clusters. It is
calculated as follows:

S ¼
XN

i¼1

min½Dbði; kÞ� �DwðiÞ
max½DwðiÞ;min½Dbði; kÞ��; ð10Þ

where N is the total number of points. Dw(i) and Dw(i,k) are
the average distances from the ith point to the other points

in its own cluster, and to the points of another cluster k,
respectively.

R measures how similar two clusters are to each other. It
is calculated as follows:

R ¼
N
2

� �Pg1

i¼1

Pg2

j¼1 n
2
ij� 1

2

Pg1

i¼1 ½
Pg2

j¼1 nij�
2� 1

2

Pg2

j¼1 ½
Pg1

i¼1 nij�
2

N
2

� � ;

ð11Þ

where N is the number of points in the image. G1 and G2

are the two partitions of data, having g1 and g2 clusters,
respectively. nij is the number of points that belong to
cluster i and cluster j of g1 and g2, respectively. CI is then
calculated as weighted average of C, R, and S as follows:

CI ¼ rcC þ rrRþ rsS; ð12Þ

where rc; rr, and rs are correlation coefficients for C, R,
and S. CI depicted CLBP (5, 8) and CLBP (5, 12) as the two
most promising features. Final classification involves LDA,
PCA, and SVM. CLBP (5, 12) has maximum accuracy of
87.5 percent with SVM, whereas CLBP (5, 8) has maximum
accuracy of 90.6 percent with PCA and SVM.

Maggioni et al. [57] presented a classification technique
for discriminating normal, precancerous, and cancerous
states of colon. In their work, tissue specimens are stained
using H&E technique. Hyperspectral data is collected in the
range of 440 to 700 nm, while setting the microscopic
magnification factor to be 400�. Nuclei are extracted from
the given samples, and then based on certain spectral
features are assigned to one of the three classes. A total of
97.1 percent classification accuracy has been reported by the
authors when nuclei have been extracted from all the
samples. However, a gradual decrease in classification
performance has been observed by the authors when nuclei
have been extracted from smaller subsets of samples.
Moreover, Chadded et al. [58] performed classification of
multispectral colon biopsy images. In the first phase of this
work, colon biopsy image is segmented by employing a
modified version of classical Snake algorithm [100]. In the
second phase, Haralick features of entropy, correlation,
energy, homogeneity, and contrast are extracted from
segmented portion of the image. Finally, images are
classified into normal and malignant categories based on
the extracted features. They achieved quite reasonable
classification accuracy in discriminating different types of
colon tissues.

Recently, Akbari et al. [59] proposed a method of colon
cancer detection. They utilized a broad band light source to
illuminate the tissue slide and a hyperspectral camera to
capture wavelength bands from 450 to 950 nm. Twelve
histo-pathological slides (three slides each for normal and
malignant tissues of lung and lymph node) are used in their
study. SVM is used to classify the given tissues. A total of
98.3 percent specificity and 96.2 percent sensitivity was
observed for colon cancer data set.

3.4 Miscellaneous Techniques

There are a few other colon biopsy image classification
techniques, which are not well established as other
methods. Therefore, these techniques have been discussed
in this section.
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An example of such methods is visual analysis-based
techniques, which simulate response of human receptive
field operators, i.e., how human perceive the things in
present scene and how neurons activate accordingly. One
such study has exploited a few metrics, based on low-level
process happening in human vision system [84]. Colon
images of size 256� 256 pixels are converted to 8-bit gray-
scale images. Two features are calculated from these
images, namely, total activation ratio (T) and orthogonal
activation ratio (O). These parameters are supposed to
mimic the neural activation happening in the brain by
visualizing organizational structure of colon tissues. T is the
ratio of maximum orientation response to the total neural
activation. O is the ratio of maximum orientation response
to the relevant orthogonal response. Maximum orientation
response, used in the parameters, is measured over set of all
orientations. Experiments proved the parameters to be good
distinguishers of normal and malignant samples.

3.5 Gene Expression-Based Techniques

Gene expression profiling-based colon cancer detection is
an active research area. There are usually three types of
alterations a gene could undergo, i.e., over expression,
suppression, and gene mutation. Such alterations have been
exploited for detection of colon cancer, and significant
research studies have been dedicated to this field. Genes are
usually analyzed by using different variants of microarrays,
like, Oligonucleotide and cDNA microarrays.

3.5.1 Oligonucleotide Microarrays

Oligonucleotide microarrays are created by synthesizing a
particular Oligonucleotide in a solid surface based on an
already defined spatial orientation. Oligonucleotide slides
are scanned using nonfocal laser that analyzes different
probes, and produces tiff images. Images are then analyzed
to obtain level of gene expressions. Gene expressions are
then used for classification.

To this end, Alon et al. employed a clustering algorithm
on a data set of 6,500 gene expressions from 22 normal and
40 malignant colon tissues in their experiment. They found
a set of 2,000 genes with the highest minimal intensity
across samples [60]. These genes are supposed to be most
discriminative compared to others in the data set. In 2007,
Grade et al. [61] worked on gene data of 73 malignant and
30 normal patients, and found 17 discriminative genes
among the data. Moreover, Yajima et al. [62] analyzed gene
expression profiles of 43 patients (23 curable cancer
patients—stage A-C, 14 early cancer patients—stage A-B,
5 right-sided cancer patients—stage D) in their research
study. Gene expression profiles are obtained from the feces
and peripheral blood. Three (PAP, REG1A, and DPEP1) and
six (SEPP1, RPL27A, ATP1B1, EEF1A1, SFN, and RPS11)
most distinctive genes are identified, respectively, in the
samples of peripheral blood and feces. This set of nine
genes has proven to be able to accurately identify 78 percent
of stage A-C, 71 percent of stage A-B, and 80 percent of
stage D patients. Likewise, Kim et al. [63] worked on a data
set of five serrated adenomas and five normal colon mucosa
samples, and identified 124 discerning genes capable of
distinguishing the samples in an effective manner.

Later, Venkatesh et al. [64] proposed another method of
colon cancer detection. Kent Ridge colon cancer data set has

been used that contains 2,000 gene expressions with highest
minimal intensity across 62 tissues. In this work, dimen-
sionality of data is reduced by using chi-squared measure,
and 135 out of 2,000 genes are selected after ranking. A
recurrent neural network with context layer, called FEJ
neural network, is used for classification. The reported
classification accuracy is 94.44 percent for this work that is
better than that of other classifiers such as naive Bayes,
classification and regression tree (CART) and random tree
by 10.23 percent approximately. Kulkarni et al. [65]
proposed an evolutionary algorithms-based method for
automatic detection of colon cancer. In this work, t-statistic
and mutual information are employed for selection of
discriminative genes among a given pool of genes. Genetic
programming and decision trees are employed as classi-
fiers, and data is divided into normal and malignant
samples based on top 10 and top 20 selected genes. Result
revealed that mutual information-based feature selection
together with genetic programming is the most effective
solution compared to other combinations.

Recently, Lee et al. [66] proposed a colon cancer
detection technique. In this study, newly proposed neural
network-based finite impulse response extreme learning
machine (FIR-ELM) [101] is employed. The FIR-ELM
algorithm performs classification based on single hidden
layer feed forward neural network (SLFN). In SLFN, well-
known filtering methods, like, finite length low-pass
filtering, high-pass filtering, and band-pass filtering are
employed to train the input weights in the hidden layer of
SLFN to extract features from the data set. These features
are then used to classify the given colon samples. Further,
Tong et al. proposed an ensemble of SVM classifiers-based
method of colon cancer detection [67]. In this work, 50 gene
expressions are selected using top scoring pair method, and
linear SVM classifiers are trained on those pairs. GA is
employed to select such an optimal combination of SVM
base classifiers, which yields maximum possible perfor-
mance. They investigated the effectiveness of their techni-
que on several binary class and multiclass gene expression
data sets including one on colon cancer. They reported
classification accuracy of 90.30 percent with colon data set.

3.5.2 cDNA Microarrays

Like Oligonucleotide, considerable research has been
carried out by using cDNA microarrays. In 1999, Backert
et al. [68] have utilized 588 genes, obtained from three
classes (normal, mucinous and nonmucinous) of colon
tissues in their research work. Mucinous and nonmucinous
are two phenotypes of colon carcinoma that bear morpho-
logical as well as genetic differences. Cell lines are
prepared for each colon category. RNA is extracted from
cultured cell lines using RNAZol which after being
polyadenylated is enriched using magnetic dynabeads,
while maintaining quality with agarose gel electrophoresis.
Duplicate copies of the genes are spotted on a nylon
membrane. Membrane is then hybridized with labeled
cDNA probes, prepared by reverse transcription from 1�g
polyAþmRNA. Ten alterations are detected in cell lines of
malignant colon compared to normal one. The reported
classification accuracy is more than 50 percent.

Bianchini et al. [70] worked on gene expressions of
25 malignant and 13 normal samples, and identified
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584 discriminating genes. Li et al. [71] have used GA to
identify discriminative genes, and achieved classification
accuracy of 94.1 percent by using KNN classifier.
Similarly, Chen and Li [72] used multiple kernel SVM
(MK-SVM) technique where multiple kernels are described
as the convex combination of the single feature basic
kernels. Algorithm was tested on two gene expression
data sets: leukemia data and colon data, and more than
90 percent classification success was achieved for both the
data sets. Strive continued in this field, and Shon et al. [73]
proposed working in the frequency domain. They used
wavelet transform to reduce feature space, and obtained
92 percent accuracy on colon data with probabilistic
neural network (PNN).

3.6 Laser Induced Fluorescence (Blood Serum
Analysis)-Based Techniques

Cancer changes chemical composition of different ingredi-
ents in blood serum. Consequently, Raman spectrum of
malignant serum heavily deviates from its normal counter-
part. Techniques, based on laser-induced fluorescence and
Raman spectroscopy, exploit such differences in blood serum
and resultant Raman spectra for detection of colon cancer.

In one of such studies, veins of patients are separated in a
segregator at a speed of 3,000 rot/min for 10 min [74]. Then
upper serum is sucked, and developed samples are
hermitically refrigerated. Double monochromator equipped
with PMT is used to collect spectra. Samples are directly
exposed to Ar-ion laser source operating at 488 nm or
514.5 nm and resultant Raman radiation is put into
monochromator. Spectrum is then amplified by using a
lock-in amplifier, and saved in computer for further use. The
reported classification accuracy is 83.5 percent for a data set
of 65 samples. Analysis revealed that normal serum showed
three well-distinguished peaks in the spectrum, whereas
cancerous serum showed no sharp peak. Fluorescence
spectroscopy also forms basis of an 88 percent accurate
probability-based algorithm for detection of colon cancer
[75]. Specimen collection is quite lengthy; patients are
ingested with colyte solution before colonoscopy. Distal tip
of spectro fluorimeter, surrounded by bundle of nine
collection fibers, is placed multiple times in light contact
with polyp and three spectra are collected for each
placement. After this, a fluorescence spectrum is collected
from a normal area of colon, approximately 1 cm far from the
polyp. Postprocessing is applied on the fluorescence spectra
to refine it. Fluorescence data is divided into modeling and
validation data sets. Modeling data is used to develop an
algorithm that could discriminate colon tissues. Spectral
regions, containing the most useful diagnostic information,
are identified. Diagnostic parameters for these regions are
identified, and their probability distribution is used to
construct a diagnostic algorithm. The algorithm is first
applied to the modeling data, and then is blindly tested on
validation data to determine its accuracy. The reported
classification accuracy for normal, hyperplastic, and adeno-
matous samples is 97, 50, and 84 percent, respectively.

4 COMPARISON

This section provides a detailed comparison of colon cancer
detection categories, and of multiple techniques within each

category. This section also summarizes equipment and the
data set used for validating these techniques. Pros and cons
of various techniques are also a part of this section.

4.1 Comparison of Equipment and Data Set

Equipment and data set play a pivotal role in determining
overall trustworthiness of any technique. Advanced data
acquisition equipment and larger data sets usually ensure
the reliability of a technique. Table 2 summarizes the
equipment used in data acquisition, equipment settings
used for capturing images/spectra, and data set for the
techniques explained in Section 3.

4.2 Performance Comparison

It is difficult to compare different techniques as each one of
them uses its own data set and equipment. However, we
have compared techniques within each category based on a
few parameters such as accuracy, data set and its acquisi-
tion method, cancer detection and grading capability, and
parameter tuning. A brief comparison of different cancer
detection categories is in Table 3. Table 4 provides detailed
comparison of colon cancer detection techniques within
each category. Pros and cons of individual techniques are
highlighted in Table 5.

Accuracy is the most promising parameter to measure
effectiveness of a technique. Table 3 demonstrates low
variability in terms of accuracy. However, OO texture
analysis-based techniques [44], [45], [46], [47], [48], [49],
[50], [51], [52] go ahead of others. Primary reason of better
accuracy is incorporation of background knowledge about
tissues organization into the segmentation/classification
process. Contrary, laser-induced fluorescence-based tech-
niques [74], [75], [76], [77], [78], [79], [80], [81], [82], [83]
have smaller accuracy, because equipment is quite delicate
and a minute human error leads to wrong results. Texture
[35], [36], [37], [38], [39], [40], [41], spectral [53], [54], [55],
[56], [57], [58], [59], and gene analysis-based techniques
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
[72], [73] show moderate accuracy. Second factor is
availability of equipment. Nikon Coolscope microscope
[102] and CCD cameras have been used in visual analysis
and texture analysis-based techniques. This equipment is
easy to use and is easily accessible to histopathologists.
Fluorescence, gene analysis, and hyperspectral analysis-
based techniques are hard to practice because equipment is
quite delicate and is not easily accessible to histopatholo-
gists. Cancer detection and grading is another factor. All
the techniques have capability to detect cancer except OO
texture analysis-based segmentation techniques [44], [45],
[46], [47], [48], [49]. There is no cancer grading capability in
different techniques except the detection of two pheno-
types in Backert et al.’s work [68], hyperplastic and
adenomatous stages in Cothern et al.’s work [75], and four
Duke’s stages in Yajima’s work [62]. Parameter tuning is a
major challenge in OO texture, fluorescence, simple
texture, and spectral analysis-based techniques. Most of
the techniques within these categories need manual/partial
adjustment of parameters. Contrary, gene and visual
analysis-based techniques do not need parameter tuning.

4.2.1 Comparison: OO Texture-Based Techniques

Table 4 demonstrates that OO texture analysis suits to the
segmentation of colon biopsy images as depicted by the
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superior segmentation results compared to classification.

Second, within the segmentation results, graph-based

segmentation [46], [47], [48] seems better compared to

object-based segmentation [44], [45]. Possible reason of

better accuracy is that graphs and resultant features

represent tissue components more realistically compared

to simple object/pixel-based features. Except initial two

techniques [44], [45] in this category, all other techniques
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have been tested on larger data sets. Data acquisition is
same because samples in all the techniques have been
stained using H&E technique, and Nikon Coolscope has
been used for capturing images. Segmentation techniques
[44], [45], [46], [47], [48], [49] only segment images, whereas
classification techniques classify samples into different
classes. There is no cancer grading capability in either of
the techniques. Parameter tuning is manual in a few
techniques [44], [48]. For instance, several parameter such
as circle radius, window size, and merge threshold are
manually adjusted in OOSEG [44]. Conversely, parameter
tuning is partially automatic in others [45], [46], [47], [50],
[51], [52]. In these techniques, authors have used separate
data set for finding optimal values of parameters. There is

only one technique [49] that provides automatic adjustment

of parameters through GA.

4.2.2 Comparison: Spectral Analysis-Based Techniques

Hyperspectral analysis-based techniques share some com-

mon advantages and disadvantages, and are poles apart in

various respects. Such similarities and differences have

been presented in Table 4. All the techniques yield reason-

able classification results. However, Maggioni’s work [57]

leads others in terms of accuracy. This is primarily due to

larger visible range, established to acquire hyperspectral

data. Like many others, all the hyperspectral analysis-based

techniques only distinguish normal and malignant samples,

and are silent about cancer grading.
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4.2.3 Comparison: Gene Expression-Based Techniques

Ultimate aim of gene expression analysis-based techniques
is to classify gene expression profiles into normal and
malignant categories. These techniques usually select
multiple gene expressions among a given pool to classify
given colon samples. Researchers have tried to find out

such common genes which are significantly expressed in a

large number and diverse colon cancer samples. In this

context, Sanz-Pamplona et al. [103] have investigated

the discerning capability of 31 different gene expressions

in 11-genes-based colon data sets. But, they could find only

one gene that differentiates samples in 11 given data sets
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with more than 65 percent classification accuracy. There-
fore, they concluded that there is no single gene which can
distinguish malignant samples in diverse data sets. Rather,
a combination of genes should be used. Among the gene
analysis-based techniques presented in Section 3.5, Oligo-
neuclotide-based techniques are rich in terms of data set.
Larger data set is used in these techniques. On the other
hand, cDNA-based techniques have been tested on smaller
data sets. All the techniques have cancer detection
capability. There are only two techniques which assign
cancer grades; Backert’s work [68] that divides samples
into two phenotypes, and Yajima’s work [62], which
assigns quantitative cancer grades according to Duke’s
scale. Further, there is no manual adjustment of parameters
in either of the techniques.

4.2.4 Comparison: Texture Analysis-Based Techniques

These techniques have exploited texture features for
detection of colon cancer. The work of Jiao et al. [40] enjoys
a slight performance advantage over others. Possible reason
of higher accuracy is the use of compact and information
rich hybrid feature vector. All the techniques [35], [36], [37],
[38], [39], [40], [41] classify colon samples into normal and
malignant classes but none of them distinguishes cancer
grades. Data set is smaller in a few studies [35], [36], [37],
[38], [40], and vice versa [39], [41]. Kalkan et al.’s work [39]
is partially automatic, and Jiao et al.’s technique [40] is fully
automatic. On the other hand, remaining techniques need
manual adjustment of system parameters such as subimage
size and area threshold needs to be manually adjusted,
respectively, in [38] and [35].

4.2.5 Comparison: Laser-Induced Fluorescence-Based

Techniques

These techniques analyze the Raman spectrum of blood
serum. Three well-distinguished peaks are indicator of
normal blood serum, whereas irregular peaks or absence of
peak shows cancer. There is small difference of accuracy in
both the techniques. Primary reasons of better accuracy in
spectro fluorimeter-based technique [75] are the postpro-
cessing steps. Data set in spectro fluorimeter-based techni-
que [75] is large (172 samples), but data acquisition process
is pretty lengthy and delicate. Placement and removal of
distal tip in light contact with the polyp needs extreme care.
Contrary, data set is smaller (65 patients) in [74] but data
acquisition is simple and straightforward. Cancer detection
process is totally automatic in monochromator-based
technique [74]. However, optimal values of system para-
meters are calculated by analyzing their probability
distribution in [75]. Both the techniques detect normal and
malignant samples. However, spectro fluorimeter-based
technique distinguishes between two precancerous stages
as well.

5 EXPERIMENTAL EVALUATION

In this section, most of the techniques presented in Section 3
have been evaluated. The techniques within different
categories work in different domains, therefore, it is not
possible to test all of them by using similar data set.
However, techniques within each category have been

evaluated on the same data set. In this connection, three
data sets have been prepared/acquired, and the different
techniques have been implemented in Matlab.

5.1 Data Set

Data Set-I has been used to assess gene expression-based
techniques. Data Set-II has been used to test OO texture
analysis-based segmentation techniques, and data set-III
has been used to test texture, visual, and OO texture
analysis-based classification techniques.

Data Set-I. This data comprises two standard colon
cancer data sets (Kent Ridge data set [104] and BioGPS data
set [105]). Kent Ridge data set contains 62 samples
(22 normal and 40 malignant). Dimensionality of Kent
Ridge data set is 2,000. BioGPS data set comprises
131 samples (37 normal and 94 malignant). Dimensionality
of BioGPS data set is 3.

Data Set-II. This data set comprises 100 biopsy images
taken from 68 randomly selected patients from the pathol-
ogy department of Rawalpindi Medical College. Biopsy
samples, comprising 5-6-�m thick tissue section, have been
stained with H&E. Nikon Biophot microscope has been used
with four different magnification factors (4�; 5�; 10�; 40�)
for capturing images. Each image has a spatial resolution of
800� 600. Images comprise normal, malignant or both
tissue types.

Data Set. Data Set-III has been prepared by capturing
174 RGB images under lens magnification factor of 10�
from the histopathological slides of 68 patients (as used in
data set-II). Out of 174 images, 92 are malignant and 82 are
benign. The images have varying size starting from
minimum of 67� 160 to a maximum of 704� 376.

5.2 Segmentation Experiment

The segmentation experiments have been performed on the
data set-I and visual results have been obtained for various
colon biopsy image segmentation techniques, as presented
in Fig. 6.

Figs. 6a1, 6a2, 6a3, 6b1, 6b2, and 6b3, respectively,
represent normal and malignant colon samples captured
at 40� magnification factor. It is clearly evident that
multilevel segmentation-based technique [48] clearly out-
classes the remaining two. This is largely due to its ability to
ensemble diverse segmentation results achieved by seg-
menting diverse graphs. Furthermore, we have quantita-
tively evaluated the segmentation results using well-known
performance measures such as accuracy, sensitivity, speci-
ficity, MCC, and F-Score.

Accuracy is a measure of overall usefulness of the
classification technique. It can be calculated using follow-
ing equation:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN � 100; ð13Þ

where true positive (TP), true negative (TN) are the number
of correctly classified positive and negative samples. False
positive (FP) and false negative (FN) are incorrectly
classified samples.

Sensitivity and specificity, respectively, are used to
calculate ability of a classifier to recognize patterns of
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positive and negative classes. They can be obtained using
the following expressions:

Sensitivity ¼ TP

TP þ FN ; ð14Þ

Specificity ¼ TN

TN þ FP : ð15Þ

MCC serves as a measure of classification in binary class
problems. Its value ranges from �1 to þ1. þ1 means
classifier is always right, whereas �1 means classifier
always commits a mistake. 0 means random prediction.
MCC can be calculated using the following expression:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððTP þ FNÞðTP þ FP ÞðTN þ FNÞðTN þ FP ÞÞ

p :

ð16Þ

F-score is a weighted average of precision and recall
values. It can be calculated by using expression (19). Its
value ranges between 0 and 1, where 0 is the worst score
and 1 is the best.

Precision ¼ TP

TP þ FP ; ð17Þ

Recall ¼ TP

TP þ FN ; ð18Þ

Fscore ¼ 2� Precision�Recall
PrecisionþRecall : ð19Þ

Quantitative results for various segmentation techniques
have been presented in Table 6.

Results in Table 6 reinforce the conclusions drawn from
Fig. 6, wherein we see that multilevel partitioning-based
technique [48] outclasses other techniques [44], [45], [47] in
terms of most of the performance evaluation parameters.

5.3 Classification Experiment

Likewise, the classification experiments have been con-
ducted on the aforementioned data sets (Data Set I and Data
Set III) and performance of most of the classification
techniques has been evaluated. Visual classification result
of five images (see Fig. 7) are given in Table 7.

Table 7 reveals that image in Fig. 7d is misclassified by
most of the techniques. This might be due to the fact that
image presents precancerous stage, in which tissues are
slightly deformed. So, it is hard to detect cancer. Quantitative
results for classification have been given in Table 8.

6 CONCLUSION

Traditionally, colon cancer is diagnosed using microscopic
tissue analysis. However, the process is subjective, and may
lead to interobserver variation in grading. Further, factors
such as tiredness, experience, and workload of pathologist
also affect the diagnosis. These vulnerabilities in the manual
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Fig. 6. Segmentation results for two images using (a1, b1) OOSEG [44], (a2, b2) GRLM [47], and (a3, b3) multilevel segmentation [48].

TABLE 6
Quantitative Results for Object-Oriented Texture Analysis-Based Segmentation Techniques



process result in need of an automatic colon cancer

detection mechanism. In this context, several colon cancer

detection techniques have been proposed. In this survey, we

have divided these techniques into five major categories:

OO texture, spectral, spatial, basic texture, serum, and gene

analysis-based techniques. A larger subset of these techni-

ques has been summarized in this paper. Additionally, an

extensive comparison of various colon cancer detection

categories and of multiple techniques within each category

has also been provided. Most of the techniques have been

implemented in Matlab, and tested on unified data set.

Analysis reveals that simple texture and OO texture

analysis-based techniques are better compared to other

approaches owing to their ease of use for histopathologits,

easy access to the equipment, and superior results. Though

our preliminary survey is quite promising, there is still a lot

more to be done. First of all, a few other performance

measures may be introduced in the comparison. Second,

there should be a separate study focusing on parameter

tuning of these techniques.
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TABLE 8
Quantitative Results for Various Colon Classification Techniques (KR ¼ Kent Ridge Data Set, BG ¼ BioGPS Data Set)

TABLE 7
Classification Results for Images Given in Fig. 7 by Using Various Colon Classification Techniques (N ¼ Normal, M ¼ Malignant)

Fig. 7: (a) and (b) Normal and (c)-(e) malignant colon biopsy images.
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