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ABSTRACT: Image denoising is an integral component of many practi-

cal medical systems. Non-local means (NLM) is an effective method for
image denoising which exploits the inherent structural redundancy pres-
ent in images. Improved adaptive non-local means (IANLM) is an

improved variant of classical NLM based on a robust threshold criterion.
In this paper, we have proposed an enhanced non-local means (ENLM)

algorithm, for application to brain MRI, by introducing several exten-
sions to the IANLM algorithm. First, a Rician bias correction method is
applied for adapting the IANLM algorithm to Rician noise in MR images.

Second, a selective median filtering procedure based on fuzzy c-means
algorithm is proposed as a postprocessing step, in order to further

improve the quality of IANLM-filtered image. Third, different parameters
of the proposed ENLM algorithm are optimized for application to brain
MR images. Different variants of the proposed algorithm have been pre-

sented in order to investigate the influence of the proposed modifica-
tions. The proposed variants have been validated on both T1-weighted

(T1-w) and T2-weighted (T2-w) simulated and real brain MRI. Compared
with other denoising methods, superior quantitative and qualitative
denoising results have been obtained for the proposed algorithm. Addi-

tionally, the proposed algorithm has been applied to T2-weighted brain
MRI with multiple sclerosis lesion to show its superior capability of pre-
serving pathologically significant information. Finally, impact of the pro-

posed algorithm has been tested on segmentation of brain MRI.
Quantitative and qualitative segmentation results verify that the

proposed algorithm based segmentation is better compared with seg-
mentation produced by other contemporary techniques. VC 2014 Wiley

Periodicals, Inc. Int J Imaging Syst Technol, 24, 52–66, 2014; Published online in

Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ima.22079
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I. INTRODUCTION

Brain MR Image analysis is a common clinical activity which is

used to diagnose many neurological diseases such as Alzheimer’s

disease, multiple sclerosis, brain tumor, etc. A computer-aided

system helps automating this clinical activity in order to obtain faster

and reliable analysis. However, the intrinsic noise present in brain

MR images severly limits the performance of such computer-aided

systems. The sources of noise in brain MR images include movement

of patient, limitations of imaging equipment, human error etc. The

noise should be removed in brain MRI prior to any subsequent proc-

essing in order to obtain adequate performance.

The traditional approaches to digital image denoising include

wavelet filtering (Donoho, 1995; Selesnick, 2004; Luisier et al.,

2007), total variation minimization (Osher et al., 2005), diffusion fil-

tering (Perona and Malik, 1990; Gilboa et al., 2004) and local neigh-

borhood based filtering (Tomasi and Manduchi, 1998). A relatively

recent approach to image denoising is weighted averaging of pixels

based on patch comparison. Buades et al. (2005) proposed a non-

local means (NLM) filter following this approach which has proven

to be successful in many denoising applications. It not only removes

noise from the input image in an effective manner but also preserves

image details. The main idea is to exploit the natural redundancy in

the input image to restore better quality image. In particular, a pixel

is restored by computing weighted mean of pixels within a search

window around it (ideally the whole image). The weights are com-

puted by comparing the local neighborhood of each pixel (called its

patch) with neighborhoods of pixels in the search window. This

approach is similar to Yaroslavsky work, however, it involves com-

parison of patches rather than comparison of pixels as in (Yaroslav-

sky, 1985). Due to the intrinsic self-redundancy in images, the

comparison of patches is expected to be reliable and robust to noise

compared with simple pixels’ based comparison.

The original NLM algorithm compares patches within whole

image which is computationally intractable. Limiting the search

area to a particular search window improves computational effi-

ciency of the algorithm without much deterioration of denoising

performance. Aksam et al. proposed a search window adaptation

mechanism for the conventional NLM algorithm based on a robust

threshold criterion (Aksam et al., 2013). Their proposed algorithm,

called improved adaptive non-local means (IANLM), is not only

computationally faster than traditional NLM but also yields better

denoising results. Thaipanich and Kuo (2010) also proposed an

adaptive search window algorithm based on different region types.

Salmon (2010) presented yet another study related to the search

window size and central patch weight which is another improtant
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parameter of the NLM algorithm. They concluded their study by

suggesting suitable size of search window for each image used in

their work. Yan et al. (2012) proposed a pixel pre-classification

process prior to weight computation in NLM algorithm. The pre-

classification process identified reliable set of candidate pixels for

weighted aeraging in order to restore a particular pixel. Moreover,

the authors employed rotationally invariant block matching (Gre-

wenig et al., 2011) to improve the process of patch comparison.

The work proposed in (Liu et al., 2008) presents an efficient and

robust NLM variant by merging classical NLM with the Laplacian

pyramid model.

In recent times, different variants of classical NLM have been

proposed for application to brain MRI denoising. Manjon et al. pro-

posed a variant, called unbiased non-local means (UNLM), wherein

Rician bias correction is applied to the NLM algorithm to better deal

with Rician noise in MRI data (Manjon et al., 2008). Yet another var-

iant of NLM was proposed by Manjon et al., which uses wavelet

mixing with classical NLM in order to take account of spatially vary-

ing noise in MRI data (Manjon et al., 2010). Vega et al. showed

improved denoising and computational performance on brain MR

images, by proposing salient features matching approach into the

NLM framework (Vega et al., 2012). Their approach is based on

comparison of key features of patches, rather than comparison of

their intensity values only. Aksam et al. proposed a novel variant of

genetic algorithm and used it to optimize parameters involved in

classical NLM algorithm for application to brain MR images (Aksam

et al., 2012).

The main contribution of this work is to propose a robust

denoising method for restoring brain MR images corrupted with

Rician noise. To be more precise, an enhanced non-local means

(ENLM) algorithm has been presented by extending our previous

work (Aksam et al., 2013) in several ways. First, ENLM offers spe-

cial treatment of Rician noise (Gudbjartsson and Patz, 1995,

Macovski, 1996), which is usually found in MR images. Second, an

effective post processing operation, called selective median filtering

(SMF), is proposed, which improves the restoration in homogene-

ous regions of the image. Finally, ENLM is characterized by opti-

mization of several crucial parameters of the algorithm, for

application to brain MR images. We have validated the perform-

ance of the proposed ENLM algorithm and its two variants on T1-

w and T2-w simulated brain MR images with known noise levels.

Quite promising quantitative and qualitative results have been

obtained even at higher noise levels. The proposed ENLM algo-

rithm has also been shown useful on real T1-w and T2-w brain MR

images. Finally, the impact of the proposed ENLM algorithm has

been studied on segmentation of brain MR images which is usually

a successive stage after denoising. The non-local information in

ENLM-filtered brain images has been incorporated into a fuzzy seg-

mentation process and the segmentation results have been compared

with a few segmentation techniques proposed in contemporary liter-

ature. Superior quantitative and qualitative results have been

obtained which verify the positive effect of ENLM on the segmen-

tation process.

The description of work in rest of this article is organized as fol-

lows. Section II describes various components of the proposed

scheme in detail. Section III describes experimental setup for various

experiments performed in this work. Section IV and V present the

experiments conducted on simulated and real brain MRI, respec-

tively. In Section VI, the impact of the proposed ENLM algorithm is

investigated on segmentation of simulated brain MRI. Finally, the

work is concluded in Section VII.

II. PROPOSED ENHANCED NON-LOCAL MEANS (ENLM)
ALGORITHM

The proposed ENLM algorithm comprises various components,

which have been described in detail in the following text. These

components are listed as follows:

1. Estimation of noise (Section II (A)).

2. IANLM filtering (Section II (B)).

3. Adaptation to Ricain noise (Section II (C)).

4. Selective median filtering (SMF) (Section II (D)).

5. Optimization of parameters (Section II (E)).

These components should be applied (in the given sequence) to

an input image in order to obtain the ENLM-filtered image. Figure 1

shows this process graphically. It is noteworthy that the optimization

of parameters is required only once for a particular type of applica-

tion (brain MRI in our case).

A. Estimation of Noise. Clinical MRI data usually contains

Rician noise due to limitations of imaging equipment. However, the

amount of noise is generally unknown. Therefore, some noise esti-

mation method should be employed in order to assess the amount of

noise in the input image. Several methods have been proposed in lit-

erature for estimation of Ricain noise in MR images. However, we

have estimated the noise from squared magnitude MR images. This

simple method for estimating the standard deviation ðr̂Þ of Rician

noise can be expressed mathematically as follows.

Figure 1. The proposed ENLM algorithm.
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where, M represents the background part of the squared magnitude

image. Mk denotes kth pixel of the background part, and N is total

number of pixels in M. Note that r̂ is computed globally using Eq. (1),

as the noise considered in this work is spatially uniform (constant).

B. Improved Adaptive Non-local Means (IANLM)
algorithm. As already stated in Section I, we have extended the

IANLM algorithm (an improved variant of classical NLM) in several

ways. Therefore, we briefly describe the NLM and IANLM algo-

rithms in this section. The NLM algorithm is based on computation

of similarity weights between patches of noisy pixels within a search

window. In the following text, the size (radius) of the search window

and patch are denoted by s and p, respectively. The NLM-restored

value of a particular pixel is computed as weighted sum of pixel val-

ues within the search window. Mathematically, the restoration pro-

cess in NLM is expressed as follows:

xi5
X
j2Si

wijyj; subject to
X
j2Si

wij51 (2)

where yj represents the jth pixel in the set of pixels (Si) within the

search window of pixel i, and xi represents the NLM-restored value

of pixel i. The similarity weight (wij) between patches Pi (patch of

pixel i is referred to Pi in the following text) and Pj is computed

using the following expression:

wij5
1

Zi
e2

kyðPiÞ2yðPj Þk22ð Þ
h2 (3)

where h is the smoothing factor which controls the tradeoff between

smoothness (noise removal) and detail preservation. ||y(Pi)-y(Pj)||2
denotes the Euclidian distance between patches Pi and Pj, where

y(Pi) and y(Pj) are the intensity values of pixels in Patch Pi and Pj,

respectively. The term Zi is a normalization constant which makes

sure that wij 2 0; 1½ �.
The IANLM algorithm introduces a search window adaptation

mechanism into the basic NLM algorithm. The size of search win-

dow is selected adaptively based on a robust threshold criterion. The

robust threshold criterion dictates that only a subset of pixels (fit pix-

els) within a search window participate in the restoration process.

For each pixel, the search window size is determined adaptively

based on number of fit pixels found within the search window for

that pixel. The pixel restoration process in IANLM is expressed

mathematically as follows.

x0i5
X
j2N�i

wijyj; subject to
X
j2N�i

wij51 (4)

where xi’ is the IANLM-restored value for pixel i and N�i � Si is the

set of pixels around pixel i, satisfying following constraints.

� Robust threshold criterion: wij>wh, where wh is the threshold

on similarity between pixels i and j.
� Window adaptation test: jN�i j � Nf , where Nf designates fit

pixels’ cardinality within the search window.

C. Adaptation to Rician Noise. The noise in MR images fol-

lows Rician distribution which is known to be signal dependent. Due

to different behavior of noise in low and high intensity regions, the

overall contrast of an image is reduced. To eliminate such bias of

Rician noise for different regions, it was proposed to filter the square

of magnitude MR image rather than the image itself (Nowak, 1999).

The effect of Rician noise can then be negated by subtracting the

bias value from the restored value of each pixel (Wiest-Daessl�e
et al., 2008). The bias value usually equals double the variance of

noise. Hence, the effect of bias can be negated by subtracting 2r2

from the restored value, where r is the standard deviation of noise in

the image.

We have applied the said bias correction method to adapt IANLM

to Rician noise. In particular, the squared magnitude MR images are

restored by IANLM and unbiased value of each pixel is obtained by

subtracting 2r2 from its IANLM-restored value. This is expressed

mathematically as follows.

x00i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0i22r2

q
(5)

where x0i represents the restored value of pixel i by IANLM algo-

rithm, and x00i is unbiased restored value obtained after applying the

bias correction.

D. Proposed Selective Median Filtering (SMF). The modi-

fications proposed in IANLM restore better quality image from its

noisy version. However, the window adaptation test in IANLM

yields slightly deteriorated denoising for homogeneous regions at

higher noise levels. This is shown for a brain MRI slice in Figure 3b

where noisy pixels can still be seen in the zoomed portion of

IANLM-filtered image. We conjecture that this irregularity induced

by the IANLM algorithm can be fixed by applying median filtering

to the restored image. However, simple median filtering strongly

deteriorates the image quality near edges. Therefore, we have pro-

posed a selective median filtering procedure based on Fuzzy

C-Means segmentation, which is applied to the IANLM-filtered

image as post processing.

Pseudo Code-I (The Selective Median Filtering process)

1. Input:

a. X0  IANLMðYÞ, where Y is the noisy image.

b. N  4, where N is number of segments in Y.

2. Z  fcmðX0 ; NÞ.
3. Set i  1.

4. For each segment S in Z

REPEAT

i. Sb  Boundary (S).

ii. Mi  S2 Sb.

iii. Set i i11.

END REPEAT

5. Compute u 
PN
i51

Mi (Obtain the mask image).

6. X
00  Median X

0
;u

� �
(Apply median filtering using mask u).

7. Output X
00
.

In the proposed selective median filtering process, the IANLM-

restored image is segmented using FCM algorithm into four charac-

teristic regions, namely white matter (WM), gray matter (GM),

cerebrospinal fluid (CSF) and Background (BG). Median filtering

(3 3 3) is then applied to the selected portion of each segment.
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The selected portion corresponding to each segment is obtained by

subtracting the boundary pixels from the original segment image.

The selected portions are added to obtain an image which can be

used as a single mask for median filtering. Thus, median filtering is

applied only to the on pixels in the final mask image. A pseudo code

for the proposed SMF process is presented in Pseudocode-I. The pro-

cess of obtaining the final mask image for an IANLM-filtered image

is also illustrated in Figure 2. The IANLM-filtered image and corre-

sponding image obtained after applying SMF is shown in Figures 3b

and 3c, respectively. By visual comparison of the zoomed portions in

Figure 3, the improved quality of SMF-processed image can be

observed easily.

E. Optimal Selection of Parameters. The IANLM algo-

rithm involves a few parameters which should be tuned for a particu-

lar application in order to obtain optimized performance. In this

work, we have optimized these parameters for application to brain

MRI. A brief description of each of these parameters is given below.

A.1. Search Window Size (s). The IANLM algorithm is sensi-

tive to this parameter, both in terms of denoising performance and

computational efficiency. A very high value of this parameter typi-

cally results in better restoration quality, however, the cost incurred

is added computational burden. On the other hand, a lower value is

more feasible in terms of computational efficiency, but results in

poor quality denoising. Therefore, a suitable tradeoff is required

between denoising quality and computational efficiency.

B.1. Patch Size (p). The patch size designates the radius of the

neighboring window around the pixel of interest. The denoising per-

formance and computational efficiency of the algorithm depends on

patch size (p, where p< s) which is an application dependent param-

eter. Therefore, a suitable value of this parameter is required for a

particular application.

C.1. Scaling Factor (k). A suitable value of smoothing parame-

ter is required in order to obtain a tradeoff between image smooth-

ness and noise removal. A very high value may result in over-

smoothing of the restored image. On the other hand, a very low value

may yield undesirable artifacts in the restored image. For application

to brain MRI, the smoothing parameter is directly related to the

amount of noise in an image (Manjon et al., 2008), i.e. h 5 kr, where

k is a scaling factor and r is the standard deviation of noise in the

input image. The parameter r can be estimated from the input image.

Hence, it is the factor k which determines the suitable value of h for

a particular application.

D.1. Central Pixel Weight (w’). The weight assigned to the cen-

tral pixel is a special case of weight computation process. In case of

central pixel, the two patches to be compared are identical. There-

fore, according to Eq. (3), the weight corresponding to central pixel

will always be equal to 1. This will bias the restored value of the

pixel towards the original noisy pixel value. Therefore, a suitable

Figure 2. Obtaining mask for selective median filtering. 1st column: Image segmented by FCM corresponding to IANLM-filtered image in

Figure 3b, 2nd column: Images corresponding to WM, GM, CSF and BG segments, 3rd column: Corresponding boundary pixels’ images, 4th
column: Corresponding individual mask images obtained after subtracting boundary images from original segment images, 5th column: Final
mask image.
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weight assignment to the central pixel is necessary. For classical

NLM, this parameter is simply set to the maximum weight value

among weights of neighboring pixels. However, in order to obtain

optimized performance, we have selected suitable value of this

parameter for application to brain MRI.

E.1. Weight Threshold (wh) and Desired Number of Fit Patches
(Nf). These parameters are unique to IANLM and are not part of

the original NLM algorithm. A higher value of Nf is desirable in

order to obtain more robust denoising (see Section II (A)). On the

other hand, increasing the value of Nf beyond a certain point merely

adds to the computational burden. Therefore, a suitable value of Nf is

desirable. Likewise, the value of wh is application dependent and

should also be selected experimentally over a range of suitable

values.

III. EXPERIMENTAL SETUP

In this work, following variants of the proposed ENLM algorithm

have been considered for validation on brain MR data.

� ENLM (Enhanced NLM) adapts the IANLM filter to Rician

noise and applies SMF as a post-processing step. Moreover,

the values of different parameters are optimized for application

to brain MRI.

� ENLMo (Optimization-void ENLM) is similar to ENLM, how-

ever, different parameters of the algorithm assume the values

proposed in (Aksam et al., 2013), rather than the optimized

values. This variant has been proposed to study the influence

of optimization of parameters performed in this work.

� ENLMs (SMF-void ENLM) is similar to ENLM, however, it

does not apply the selective median filtering procedure as post

processing. This variant has been proposed to test the influence

of the proposed selective median filtering process.

In this section, optimized values of different parameters (s, p,

w’, k, Nf, and wh) of ENLM algorithm are obtained for application

to simulated brain MR data. In an optimization experiment for a

particular parameter, values of all the parameters are fixed while

only varying the parameter under investigation, within a suitable

range of its values. Following default values (values of parameters,

other than the parameter under investigation) have been used for

various parameters: S 5 5, P 5 2, w’5 0.1, k 5 1, Nf 5 60 and

wh 5 0.01. These values have been selected after substantial empir-

ical testing. The optimal values of parameter, selected in this sec-

tion, have been employed in different experiments performed in

subsequent sections.

Two quantitative measures, namely Peak Signal to Noise Ratio

(PSNR) and Structural Similarity Index Measure (SSIM) have been

used to assess denoising performance. PSNR measures visual simi-

larity between two images and is computed using the following

expression.

PSNR ¼ 10 log10ðR2=MSEÞ ¼ 20 log10 ðR=RMSEÞ (6)

where, R represents the maximum possible intensity value of a pixel

in the image. For 8-bit gray level images, R is set to 255. RMSE is

the root mean square error between the restored and original (ground

truth) image. The other denoising performance measure, SSIM, was

introduced to measure the similarity between structures of two

images rather than the similarity between intensity values of their

pixels (Wang et al., 2004). Valid range of values for this index vary

from 0 (maximum deviation from ground truth) to 1 (identical to

ground truth). SSIM between two images I and J can be computed

using the following expression.

SSIM x; yð Þ5 ð2lIlJ1c1Þð2rIJ1c2Þ
l2

I 1l2
J1c1

� �
r2

I 1r2
J1c2

� � (7)

where in our case, I and J represent the reference and denoised

images, respectively. lI and lJ represent the mean intensity levels of

I and J, and rI and rJ are standard deviations of I and J, respectively.

rIJ is the covariance of I and J; c1 and c2 are two constants depend-

ing on dynamic range of I and J.

Various experiments, performed in this work, have been con-

ducted on a Core i7 system with 16 GB RAM and 3.4 GHz Turbo

Boost CPU. MATLAB R2013a (8.1.0.604, http://www.mathworks.-

com/products/matlab/) has been used as the computational tool

(MATLAB 2013). OriginPro 9 (v9.0, http://www.originlab.com) has

been used as a graphing tool (OriginPro 2012).

A. Data Set. In this work, both simulated and real brain MR

images have been used in several experiments. The simulated

brain MR images have been obtained from a database called

BrainWeb (Collins et al., 1998). The images in the BrainWeb

database have been generated by a MRI simulator (Kwan et al.,

1996), and are available online. Both T1-w and T2-w simulated

Figure 3. The effect of selective median filtering process, (a) A noisy brain image (Noise: 15%) (b) IANLM-filtered image (d) Image obtained
after application of SMF, using mask in Figure 2, to (b). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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brain volumes from the BrainWeb database have been used in our

experiments. The slice thickness of 3D brain volumes is 1 mm

and overall volume size is 181 3 217 3 181. Nonbrain tissues

(skull, fat etc.) have been cropped with the help of a brain mask,

which is constructed from segmentation ground truth available in

the BrainWeb database. Thus, different experiments have been

performed on the brain portion and average results, over all brain

slices, have been reported.

The proposed algorithm has also been validated by performing

experiments on real brain MRI. The real brain images have been

obtained from the Open Access Series of Imaging Studies

(OASIS), which is a publicly available clinical brain MRI database

of various subjects (Marcus et al., 2007). We have performed

denoising on structural MRI scans of different subjects in this

database in order to assess the ability of proposed algorithm to

remove the inherent noise in these images. A brain extraction

algorithm from MIPAV (v7.0.1, http://mipav.cit.nih.gov/) (MIPAV

2013) has been used to extract brain portion from complete head

MRI. A good reason for selecting the OASIS data set is that, both

T1-w and T2-w MR scans are available for each subject. There-

fore, denoising experiments have been performed on T1-w and

T2-w real brain MRI and results have been shown for selected

slices.

B. Selection of Parameters. As discussed earlier, the pro-

posed algorithm involves a few critical parameters which need to be

selected empirically in a particular application for optimized per-

formance. In this section, we explore these values, over a potential

range of values, for application to simulated brain MRI denoising.

These values will be employed in different experiments performed in

subsequent sections.

Figure 4 shows the performance of the proposed ENLM algo-

rithm over suitable values of these parameters. Figures 4a and 4b

show performance for search window size (s) and patch size (p). It

can be observed from Figure 4a that, for lower noise levels, higher

PSNR values are obtained with increase of s. However, for higher

noise levels, no improvement is observed when s increases beyond a

certain point. Therefore, a suitable tradeoff is obtained between the

denoising performance and computational efficiency by selecting

s 5 5. Likewise, Figure 4b shows that for high noise levels, the

PSNR values do not improve after p 5 2. Rather, for low noise, the

PSNR decreases for p> 2. Therefore, we select p 5 2 for use in sub-

sequent experiments.

Figures 4c and 4d demonstrate the performance of the proposed

ENLM algorithm over suitable values of the scaling factor (k) and

central pixel weight (w’). It is clear from Figure 4c that for all noise

levels, peak performance is observed at w’ 5 0.1. A higher value of

w’ simply deteriorates the performance. Similarly, Figure 4d shows

that a suitable tradeoff between PSNR values at lower and higher

noise levels is obtained for k 5 1.

Figures 4e and 4f present the performance for two important

parameters of IANLM, namely number of fit patches (Nf) and weight

threshold (wh). Figure 4e shows that higher PSNR values are

obtained with the increase of Nf. However, little or no change in

PSNR is observed after Nf> 60. It should be recognized that the

higher the value of Nf, more will be the computational burden.

Therefore, for optimized denoising and computational performance,

Nf 5 60 is the most viable option. Figure 4f shows that the PSNR

values generally decrease with increase in value of wh. A suitable

tradeoff between PSNR values at lower and higher noise levels is

obtained for wh50.01.

IV. EXPERIMETNS ON SIMULATED BRAIN MRI

In this section, we have performed several experiments for validation

of the proposed ENLM algorithm on simulated T1-w and T2-w brain

MRI. In Experiment I, the performance of the proposed ENLM algo-

rithm has been compared with Unbiased NLM (UNLM)—an opti-

mized variant of classical NLM algorithm adapted to Rician noise

(see Section I). In Experiment II, the effect of parameter optimization

and the proposed selective median filtering has been investigated on

denoising performance of ENLM. In addition to UNLM in Experi-

ment I, the proposed ENLM algorithm has also been compared with

two other contemporary methods in Experiment III. Finally, in

Experiment IV, the performance of the proposed ENLM algorithm is

compared qualitatively with UNLM on a T2-weighted brain MRI

with multiple sclerosis (MS) lesion. Table I summarizes the values

of different parameters employed for different algorithms used in

subsequent experiments. A hyphen symbol for a parameter value

denotes that the parameter is not applicable to current algorithm. The

values for Unbiased NLM have been inherited from (Manjon et al.,

2008), whereas values used for different variants of ENLM have

been obtained as discussed in Section III (B).

A. Experiment I: Performance Analysis of the Proposed
Algorithm. In this section, we have applied the proposed ENLM

algorithm to noisy T1-w and T2-w simulated brain MRI. The per-

formance of the proposed ENLM algorithm has been compared with

UNLM at different noise levels. Figure 5 quantitatively compares the

performance of UNLM and the proposed ENLM algorithm in terms

of PSNR for T1-w and T2-w simulated brain MRI. As shown in Fig-

ure 5, the proposed ENLM algorithm outperforms UNLM at all noise

levels. The advantage of ENLM is more prominent in case of T2-w

brain MRI, where the performance boost of ENLM is more com-

pared with T1-w brain MRI.

The denoising results using UNLM and the proposed ENLM

algorithm have also been compared qualitatively. Figure 6 shows

T1-w and T2-w brain images corresponding to a particular slice from

the 3D simulated brain volume. Rician noise (10%) has been added

to the said images prior to denoising using UNLM and the proposed

ENLM algorithm. Third and fourth columns of Figure 6 present the

images restored by using UNLM and the proposed ENLM algorithm.

It can be observed visually that quality of the image restored by

ENLM is better compared with UNLM-filtered image. The proposed

ENLM algorithm better preserves minute image details (see the

zoomed portions in Fig. 6). The contrast of the ENLM-filtered image

is also better compared with UNLM-filtered image.

B. Experiment II: Influence of Optimization and
Proposed SMF Process. In this section, we have investigated

the influence of the proposed selective median filtering (SMF) and

parameters optimization process on denoising performance. In partic-

ular, ENLM and ENLMs have been applied to T1-w and T2-w simu-

lated brain MRI in order to compare the performance of the

proposed algorithm with and without the application of proposed

SMF process, respectively. Similarly, the comparison of ENLMo and

ENLM helps realizing the performance advantage caused by the

optimization of ENLM which was performed in Section III (B). Fig-

ure 7 compares the performance of the three variants of ENLM on

simulated T1-w and T2-w brain MRI. The results have been pre-

sented in terms of both PSNR and SSIM. By comparing the perform-

ance of ENLMo and ENLM, it can be concluded that the process of

optimization improves denoising performance for both T1-w and
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T2-w brain MRI. Similarly, the inclusion of proposed SMF process

significantly improves denoising results, especially at higher noise

levels (see ENLMs and ENLM).

C. Experiment III: Comparison with Other Contemporary
Methods. In Section IV (A), we compared the performance of

the proposed ENLM algorithm with Unbiased NLM (UNLM)

Figure 4. Optimal selection of (a) Search window size (s), (b) Patch size (p), (c) Central pixel weight (w’), (d) Scaling factor (k), (e) Number of fit

patches (Nf), and (f) Weight threshold (wh). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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algorithm. In this section, we have compared the performance of the

proposed ENLM algorithm, on T1-w simulated brain MRI denoising,

with two other state of the art denoising methods. The first method is

based on an approach of conditional posterior sampling which aims

to find a general Bayes estimate of the noise-free image in the least-

square sense (Wong et al., 2010). The second method is a wavelet-

domain method that minimizes the mean square error between the

noise-free and restored images (Luisier et al., 2007). The mean

square error is estimated from an unbiased risk estimate called

SURE (Stein’s Unbiased Risk Estimate). Figure 8 shows the results,

in terms of PSNR, for various denoising methods compared in this

section. Clear advantage of the proposed algorithm is immediately

Table I. Parameters’ values used for different denoising algorithms.

Parameters

w p k Nf wh w’ Wavelet rspatial

UNLM 5 2 1.2 – – Max – –

ENLMo 5 2 1.2 27 0.01 Max – –

ENLM 5 2 1 60 0.01 0.1 – –

OWT SURE-LET – – – – – – sym8 –

Bayes 3 – – – – – – 0.5

Figure 5. Performance comparison (in terms of PSNR) of UNLM
and the proposed ENLM algorithm. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Performance comparison (visual) of the proposed ENLM algorithm with UNLM. First row: T1-w brain images. Second row: T2-w
brain images. First and second column: original and noisy (noise 5 10%) images, respectively. Third and fourth column: images filtered by
UNLM and ENLM, respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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visible compared with other methods. The images restored using dif-

ferent methods have also been compared visually in Figure 9, for an

input image corrupted with 10% Rician noise. The proposed ENLM

method restores a cleaner image, while other methods produce much

blurred images with noise artifacts still present in the images. Hence,

the proposed ENLM algorithm supersedes other methods both quan-

titatively and qualitatively.

D. Experiment IV: Performance Comparison on T2-
Weighted Brain MRI with MS Lesion. Medical images usu-

ally contain small structures which encapsulate pathologically impor-

tant information. An effective denoising method should preserve

such structures during the restoration process. In this section, we

have applied the proposed ENLM method to denoise a T2-weighted

brain MR image with multiple sclerosis (MS) lesion. Rician noise

(10%) has been added to the said image (see Fig. 10) and denoising

result of the proposed algorithm has been visually compared with

UNLM. Figures 10c and 10d show the filtered images using UNLM

and ENLM, respectively. It can be observed by visual inspection of

the highlighted area in Figure 10 that the proposed ENLM algorithm

better preserves the MS lesion structures. Therefore, the proposed

ENLM algorithm is much suitable for medical applications which

extract useful information from the MS lesion structures.

V. EXPERIMENTS ON REAL BRAIN MRI

Clinical MR images are usually corrupted with Ricain noise of

unknown intensity. Therefore, a suitable method is inevitable for

estimating the amount of noise present in real MRI data. Several

methods have been proposed in literature to attack the said prob-

lem (Sijbers et al., 1998; Nowak, 1999; Fernandez et al., 2008).

We have estimated the noise from real brain MRI using back-

ground part of the square magnitude MR images (Fernandez et al.,

2008). The noise estimation method has already been described in

Section II (A).

We have denoised real brain MRI (see Section III (A)) using the

proposed ENLM algorithm and compared its performance qualita-

tively with UNLM. Figure 11 shows T1-w and T2-w noisy brain MR

images from OASIS database and corresponding restored images

using ENLM and UNLM. In order to compare the two images more

diligently, selected portions of the noisy and restored images are also

shown in zoomed view. It can be seen from Figure 11 that, similar to

Figure 7. Impact of SMF and parameter optimization process on denoising performance of ENLM. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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simulated MRI denoising, the proposed ENLM algorithm better pre-

serves small structures in the restored images compared with UNLM.

VI. APPLICATION TO BRAIN MRI SEGMENTATION

In many practical medical systems, segmentation is a successive step

after denoising. Accurate segmentation depends critically on effec-

tive denoising. An effective denoising method preserves original

structures in the restored image which, in turn, leads to better seg-

mentation. On the other hand, a poor denoising may introduce unde-

sirable artifacts in the restored image, thereby resulting in

deteriorated segmentation. Successively, the quality of segmentation

affects the classification of medical images (Chaudhry et al., 2013).

Therefore, in this section, we have investigated the impact of the pro-

posed ENLM algorithm on segmentation of simulated brain MRI.

Generally, four major segments are present in a brain MR image:

three types of brain tissues and a background segment. The three

brain tissue types are gray matter (GM), white matter (WM) and cer-

ebrospinal fluid (CSF) which should be accurately demarcated by the

segmentation algorithm. However, Brain MRI suffers from a very

common problem of Partial volume effect (PVE). PVE refers to the

fact that in a particular voxel of a brain MRI volume, several types

of tissues may overlap with each other. Therefore, characterizing

each voxel discretely as part of a particular tissue type is not a suita-

ble approach. In this regard, fuzzy segmentation techniques, which

intrinsically deal with the PVE problem, prove to be quite successful.

These techniques output a fuzzy membership matrix which describes

the membership of each voxel to each tissue type. Thus, the tissue

overlap problem is inherently dealt with the help of fuzzy member-

ship values.

Fuzzy c-means (FCM) is an unsupervised segmentation technique

based on iterative update of fuzzy membership values (Bezdek et al.,

1984). Several variants of classical FCM have been proposed in liter-

ature (Chuang et al., 2006; Cai et al., 2007; Krinidis and Chatzis,

2010; Hassan et al., 2012). Fuzzy c-means with non-local spatial

information (FCM_NLS) is a variant of FCM which modifies the

Figure 8. Performance comparison of the proposed ENLM algo-
rithm on T1-w brain MRI with two contemporary methods. [Color fig-

ure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 9. Performance comparison (visual) of the proposed ENLM algorithm with two contemporary methods. (a, b) T1-w original and noisy
brain images, respectively. Image restored by (c) OWT SURE-LET method, (d) Bayesian estimation denoising method, and (e) the proposed

ENLM algorithm.
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objective function of classical FCM by incorporating non-local

spatial information (Zhao et al., 2011). The non-local information is

integrated into the segmentation framework by adding a non-local

term into the objective function of classical FCM. The non-local

term is computed from the image restored by NLM instead of the

original image. Thus, FCM_NLS minimizes an objective function

which is computed from both the original and NLM-restored image.

In this section, we have tested the impact of the proposed ENLM

algorithm on segmentation performance by computing the non-local

term of FCM_NLS using ENLM-restored image instead of NLM-

restored image. The resulting segmentation algorithm is named as

Fuzzy c-means with enhanced non-local information (FCM_ENL) in

the following text. The objective function of FCM_ENL (see Zhao

et al., 2011) is given as follows.

Figure 10. Performance of the proposed ENLM algorithm on T2-w brian MRI with MS lesion, (a) Original T2-w image, (b) Noisy image (noise
5 10%), (c) UNLM-filtered image, (d) ENLM-filtered image. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 11. Performance comparison (visual) of the proposed ENLM algorithm with UNLM on real brain MRI. First row: T1-w real brain images.

Second row: T2-w real brain images. First column: original images. Second and third column: images filtered by UNLM and ENLM, respectively.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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where, yi and xi’ are intensity values of ith noisy pixel and corre-

sponding ENLM-restored pixel, respectively. vk designates the kth

cluster centroid, whereas uki represents fuzzy membership of pixel i
to cluster k. Number of clusters and number of input image pixels

are denoted by c and n, respectively. The second term in Eq. (8)

takes into account the non-local information. The parameter b con-

trols the tradeoff between the amount of information exploited from

input and restored images.

We have compared the performance of the proposed algorithm

based FCM_ENL with a few other segmentation techniques on simu-

lated brain MRI segmentation. These techniques include spatial

fuzzy c-means (SFCM) (Chuang et al., 2006), fast generalized fuzzy

c-means (FGFCM) (Cai et al., 2007), fuzzy local information

c-means (FLICM) (Krinidis and Chatzis, 2010) and fuzzy c-means

with unbiased non-local information (FCM_UNL) (Zhao et al.,

2011). FCM_UNL is similar to FCM_ENL, however, it employs

UNLM-restored image in the non-local term of its objective function

instead of ENLM-restored image. The segmentation results are

reported for each technique in terms of segmentation accuracy (SA),

Rand index (RI), and dice coefficient (DC). SA (the ratio of number

of correctly labeled pixels to total number of pixels) and RI (Rand,

1971) are quantitative measures to assess the overall accuracy of a

Table II. Performance comparison (in terms of SA and RI) of different

segmentation techniques.

Noise (%)

Segmentation Technique

SFCM FGFCM FLICM FCM_UNL FCM_ENL

SA 5 0.9534 0.9516 0.9454 0.9592 0.9617

9 0.9027 0.9117 0.9277 0.9305 0.9351

13 0.7951 0.8371 0.8589 0.8961 0.9052

15 0.7197 0.7662 0.7980 0.8779 0.8906

RI 5 0.8794 0.8762 0.8654 0.8949 0.9003

9 0.7649 0.7868 0.8266 0.8280 0.8382

13 0.5739 0.6538 0.7162 0.7544 0.7736

15 0.4803 0.5582 0.6397 0.7181 0.7434

Figure 12. Performance comparison (in terms of DC) of the proposed ENLM based FCM_ENL segmentation with other techniques for, (a) WM,
(b) GM, (c) CSF. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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segmentation technique. RI is computed using the following mathe-

matical expression.

RI 5
a1b

a1b1c1d
(9)

where a, b, c, and d represent number of different pairs of elements

in the ground truth (G) and segmented (S) images. In particular, a
represents the number of pairs assigned to same clusters in S and in

G, and d represent number of pairs assigned to the different clusters

in S and in G. On the other hand, b represents number of pairs

assigned to different clusters in S and same clusters in G, and c repre-

sents number of pairs assigned to same clusters in S and different

clusters in G.

Dice coefficient (DC) is used to measure the effectiveness of delin-

eating each segment separately. DC has been employed for assessing

the segmentation accuracy as segregating each tissue separately in

brain MRI is important in certain medical applications. For each seg-

ment, the dice coefficient is computed using the following expression.

DC Si;Gið Þ5 2jSi \ Gij
jSij1jGij

; 8 i 2 c (10)

where, Gi and Si represent the set of pixels in the ith segment of

ground truth and segmented images, respectively. Legal values of

SA, RI and DC range from 0 to 1.

A. Quantitative Comparison. Table II compares SA and RI

values for each technique, applied to simulated brain MRI at differ-

ent noise levels. It can be observed from the quantitative measures in

Table II that the proposed ENLM algorithm based FCM_ENL tech-

nique outperforms all other algorithms at all noise levels. The results

are consistent for both the evaluation measures. The performance

advantage of FCM_ENL becomes even more evident with increasing

noise levels. Therefore, it can be reasonably concluded that

FCM_ENL is robust to noise compared with other techniques.

Figure 12 shows a graphical comparison of different segmenta-

tion techniques in terms of DC values. Figures 12a to 12c correspond

to WM, GM, and CSF segments, respectively. It can be concluded

by comparing results in Figure 12 that FCM_ENL performs superior

segmentation of each tissue compared with other segmentation tech-

niques. Particularly, in case of CSF, FCM_ENL yields significantly

improved segmentation compared with other techniques. Hence,

FCM_ENL not only provides overall best accuracy, but also better

handles segmentation of individual tissue types.

B. Qualitative Comparison. Finally, we have compared visual

segmentation results, produced by the proposed ENLM algorithm

based FCM_ENL and other segmentation techniques used in this

work. The ground truth of segmentation is available for simulated

brain MRI data set which we have used in our comparison. Therefore,

visual segmentation results, produced by different techniques, can be

easily validated against the ground truth segmentation. Figure 13a

shows the ground truth segmentation for a brain image from the Brain-

web simulated brain MRI data set. Figures 13b to 13f show corre-

sponding segmentation results produced by different segmentation

techniques at 10% noise. For a more convenient comparison, a

selected portion of each image is displayed in zoomed view. It can be

concluded by visual inspection of the images that the proposed ENLM

based FCM_ENL produces a segmentation that bears maximal simi-

larity with the ground truth. The images segmented by other techni-

ques contain misclassified pixels due to under- or over-segmentation.

Therefore, it can be concluded reasonably that the proposed ENLM

algorithm boosts the performance of segmentation process.

Figure 13. Performance comparison (visual) of different segmentation techniques. (a) Ground truth image with four segments, image seg-
mented by (b) SFCM, (c) FLICM, (d) FGFCM, (e) FCM_UNL, (f) Proposed ENLM algorithm based FCM_ENL. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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VII. CONCLUSION

Brain MR Images are corrupted by Rician noise, which should be

removed with an effective denoising method in order to obtain rea-

sonable results in subsequent treatment of these images. NLM is a

popular denoising method based on weighted averaging of image

pixels within a non-local window. IANLM is a variant of classical

NLM which proposes making the window size adaptive based on a

robust threshold criterion. In this work, we have proposed an

enhanced non-local means (ENLM) algorithm for application to

brain MRI by introducing certain extensions to IANLM. First, in

ENLM, the IANLM algorithm has been adapted to Rician noise in

magnetic resonance images by applying a Rician bias correction pro-

cedure. Second, a selective median filtering procedure has been pro-

posed as a post processing step in order to overcome limitations of

IANLM. Third, different parameters of the proposed ENLM algo-

rithm have been optimized for application to brain MRI. In order to

investigate the influence of the modifications proposed in ENLM,

different variants of the proposed ENLM algorithm have been vali-

dated on both T1-w and T2-w simulated and real brain MRI.

Improved quantitative and qualitative results have been obtained by

ENLM compared with other denoising algorithms. Additionally, the

proposed algorithm has been applied to a T2-w brain MR image with

MS lesion in order to show that the algorithm effectively preserves

pathologically important information. Finally, the impact of the pro-

posed ENLM algorithm on segmentation has also been investigated,

and improved segmentation results (both quantitative and qualitative)

have been obtained compared with other state of the art segmentation

techniques.
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