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a b s t r a c t

In recent years, classification of colon biopsy images has become an active research area. Traditionally,
colon cancer is diagnosed using microscopic analysis. However, the process is subjective and leads to
considerable inter/intra observer variation. Therefore, reliable computer-aided colon cancer detection
techniques are in high demand. In this paper, we propose a colon biopsy image classification system,
called CBIC, which benefits from discriminatory capabilities of information rich hybrid feature spaces,
and performance enhancement based on ensemble classification methodology. Normal and malignant
colon biopsy images differ with each other in terms of the color distribution of different biological
constituents. The colors of different constituents are sharp in normal images, whereas the colors diffuse
with each other in malignant images. In order to exploit this variation, two feature types, namely color
components based statistical moments (CCSM) and Haralick features have been proposed, which are
color components based variants of their traditional counterparts. Moreover, in normal colon biopsy
images, epithelial cells possess sharp and well-defined edges. Histogram of oriented gradients (HOG)
based features have been employed to exploit this information. Different combinations of hybrid features
have been constructed from HOG, CCSM, and Haralick features. The minimum Redundancy Maximum
Relevance (mRMR) feature selection method has been employed to select meaningful features from
individual and hybrid feature sets. Finally, an ensemble classifier based on majority voting has been
proposed, which classifies colon biopsy images using the selected features. Linear, RBF, and sigmoid SVM
have been employed as base classifiers. The proposed system has been tested on 174 colon biopsy
images, and improved performance (¼98.85%) has been observed compared to previously reported
studies. Additionally, the use of mRMR method has been justified by comparing the performance of CBIC
on original and reduced feature sets.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Colon cancer has become a major cause of deaths in modern
and industrialized world. The death toll rate has been raised to
0.5 million deaths per year worldwide [1]. Colon cancer usually
arises due to chain smoking, family history, increasing age, and
unbalanced consumption of meat and fruits/vegetables [2].

The common and traditional method of colon cancer diagnosis
is microscopic analysis of colon biopsy samples. In such an
examination, histopathologists analyze the biopsy samples under
microscope, and diagnose the tissue as normal/malignant based
on the morphology of tissues. Normal and malignant tissues have
high contrast in their morphology. Normal colon tissues have well-
defined structure. Fig. 1(a) presents microscopic image of a normal
colon biopsy sample, wherein all the tissues possess a regular

structure. The detailed regular structure of a normal colon tissue is
shown in Fig. 1(b), wherein we see that a normal colon tissue has
three constituents, namely epithelial cells, non-epithelial cells, and
lumen. Epithelial cells usually surround lumen and form glandular
structure, whereas non-epithelial cells, called stroma, lie in
between these structures. But, cancer heavily disturbs the struc-
ture of colon tissues, and makes the structure almost amorphous.
The deformation introduced by cancer is clearly visible in the
microscopic image of a malignant colon biopsy sample shown in
Fig. 1(c). Normal and malignant colon tissues have similar colors,
but the distribution of colors heavily varies. Further, normal
tissues have well-defined structures such as elliptic shaped
epithelial cells and lumen having sharp boundaries. Malignant
colon tissues, on the other hand, have no such edges. All the
constituents of tissues mix with each other, thereby diminishing
the boundaries.

Histopathologists assign two quantitative measures to the
malignant samples, namely stages and grades. Stage is the extent
to which cancer has reached/spread in the colon or other body
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parts. There are five stages of colon cancer (0, A–D) according to
Duke0s scale [3]. Stage 0 is the earliest stage in which cancer just
starts to develop. It is still restricted to the innermost lining of
colon. In stage A, cancer has reached to the middle layer of colon.
In stage B, cancer has reached beyond the middle layer. Cancer has
stage C if it reaches lymph nodes, and is found in at least three of
them. Stage D is the final stage, wherein cancer has reached other
body parts such as lungs and liver. The grade of cancer, on the
other hand, is the differentiability level of malignant cells. There
are three grades of colon cancer. The lowest grade of colon cancer
is ‘well differentiated’, in which malignant cells are almost similar
to the normal ones. It is the grade in which cancer progresses at
lowest speed. The second grade of colon cancer is ‘moderately
differentiated’, wherein malignant cells are differentiable from
normal cells. In this grade, cancer cells progress at moderate
speed. The third grade of colon cancer is ‘poorly differentiated’,
in which malignant cells are totally different from the normal
ones, and are easily distinguishable. In this particular grade, cancer
cells spread at very high rate. Fig. 2 presents microscopic images of
malignant colon biopsy samples having different grades of cancer.

The determination of the grades and stages of colon cancer is a
manual process. In order to determine cancer grades, histopathol-
ogists analyze the biopsy samples under microscope and assign
quantitative cancer grades depending upon the morphology of

malignant tissues. On the other hand, cancer stage is determined
by microscopic analysis of separate biopsy samples taken from
different layers of colon and lymph nodes. The manual process of
colon cancer detection has a few limitations. For instance, it
consumes precious time of the histopathologists as they have to
analyze many images per day. Moreover, the process is subjective,
and leads to biased opinion due to workload and experience level
of histopathologists. Further, the process leads to inter- and intra-
observer variabilities [4,5]. Therefore, an accurate computational
system for automatic colon cancer detection is highly desirable.

In the past two decades, a few computer-aided diagnostic
systems have been proposed for automatic detection of colon
cancer. However, the efforts in case of colon cancer are still deficient
compared to other areas of computer-aided diagnosis. Some of the
typical approaches for computer-aided diagnosis of colon cancer
include analysis of human genes using microarrays [6,7], study of
variation in the composition of normal and cancerous blood serum
[8,9], and exploitation of textural changes in cancerous and normal
colon images. These techniques have been summarized in a recent
survey reported by Rathore et al. [10].

Textural variations in colon biopsy images are the emphasis of
this research work. Texture analysis of colon biopsy images is
characterized by extraction of discriminate features from the
observed texture of these images. The extracted features are then

Fig. 1. Microscopic images of (a) normal and (c) malignant colon biopsy samples, and (b) regular structure of normal colon tissue.

Fig. 2. Different colon cancer grades: (a1,a2) well differentiated, (b1,b2) moderately differentiated, and (c1,c2) poorly differentiated.
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used as an input to different classifiers for discerning normal and
malignant images. For example, Esgiar et al. calculated six texture
features (contrast, entropy, angular second moment, dissimilarity,
inverse difference moment and correlation) from gray-level co-
occurrence matrix (GLCM) of the input colon biopsy images. They
employed linear discriminant analysis (LDA) and K-nearest neigh-
bor (KNN) classifiers, and obtained 90.2% classification accuracy
[11]. They found correlation and entropy to be the two most
distinctive features compared to others. Esgiar et al. [12] further
extended their work, and combined features of entropy and
correlation with image fractal dimensions. They obtained 94.10%
classification accuracy with the same set of classifiers. Masood
et al. [13] employed morphological and GLCM based texture
features to obtain a classification accuracy of 84% and 90%,
respectively. Morphological features comprise features of shape,
size and orientation, whereas GLCM based features encompass
energy, inertia and local homogeneity. Both types of features are
obtained using single spectral band of colon biopsy images.
Support vector machines (SVM) with polynomial kernel of degree
3 is employed as a classifier. Masood and Rajpoot [14] further
extend their work, and employed circular local binary patterns
from single spectral band in order to classify colon biopsy images.
They employed Gaussian SVM for classification, and obtained an
accuracy of 90%.

In 2010, Altunbay et al. [15] proposed a textural features based
technique for classifying colon samples into normal and malignant
categories. They constructed a graph on different objects, obtained
by using circle fit algorithm [16] on the white, pink and purple
clusters of the image. A few structural features such as degree,
average clustering coefficient, and diameter are computed from
the color graphs, and are used to classify given samples by using
SVM classifier with linear kernel. Moreover, Ozdemir et al. [17]
presented an interesting method of colon cancer detection. In their
work, reference graphs of a few images of normal colon tissues are
generated by employing previously used method of graph creation
[15,18–20], and are stored for future referencing. Then, query
graphs are generated from the test images, and are located in the
reference graphs. Query graphs are searched in the reference
graphs by placing nucleus node of a query graph on each node
of the reference graphs. Three most similar graphs are found in the
reference graphs, and then based on the degree of similarity,
normal/malignant class is assigned to the test sample.

The schemes mentioned herein suffer a few drawbacks. For
instance, graph based colon image classification schemes [15,17]
are computationally expensive, and consume considerable CPU
time in feature extraction and classification stages. Further, pre-
vious techniques have exploited only one certain aspect for colon
biopsy image classification i.e. they have utilized features of only
one type. These techniques include texture features, morphologi-
cal features or object texture based features. But multiple feature
types have not been investigated simultaneously to get a more
robust and discerning feature set. Therefore, an automatic colon
biopsy image classification scheme is highly desirable that is
computationally tractable and simultaneously highly rich in terms
of discerning features.

In this paper, we propose a colon biopsy image classification (CBIC)
system, which performs ensemble classification of samples based on
discriminatory capabilities of hybrid feature spaces. In order to exploit
the color information present in colon biopsy images, variants of
traditional statistical moments and Haralick features have been
proposed. Further, traditional histogram of oriented gradients (HOG)
based features have been used. These features have been combined to
form various hybrid feature sets. The minimum Redundancy Max-
imum Relevance (mRMR) method has been employed to select
discerning feature sets from individual as well as hybrid feature sets.
The selected discerning feature sets have been used for classification of

samples into normal and malignant classes by employing ensemble
classification through majority voting.

The experimental results in this work have been obtained from
various aspects. First, the performance of individual as well as
hybrid feature types has been investigated. Second, the perfor-
mance of original feature sets and the feature sets selected by
mRMR method has been examined. Third, the performance of
individual as well as ensemble classifier has been studied. The
experimental results verify that the proposed system is quite
suitable for the classification of colon biopsy images. Further, an
analysis on computational efficiency of feature extraction and
classification stages has been presented in order to validate the
suitability of the proposed CBIC system to serve in real-time
scenarios where histopathologists receive many images per day.

The remainder of this paper is organized as follows. Section 2
describes proposed system in detail. Section 3 describes perfor-
mance measures. Section 4 demonstrates experimental results,
and Section 5 concludes the paper.

2. Proposed system

The proposed CBIC colon classification system utilizes hybrid
features, selected by mRMR, for decision making through ensem-
ble classification. In this paper, we have experimentally validated
the proposed CBIC system by evaluating the discerning capability
of reduced individual and hybrid feature sets using base and
ensemble classifiers. The proposed system comprises four main
stages, namely (1) feature extraction, (2) feature selection,
(3) training and testing data formulation, and finally, (4) classifica-
tion of images into normal and malignant categories by using an
ensemble classifier. Fig. 3 presents top-level architecture of the
proposed system.

2.1. Feature extraction

Features provide a mean to decode an image pattern into a set
of discriminatory measurable values. The eventual target of this
phase is to articulate a feature vector for every image. Three types
of features, namely CCSM, Haralick and HOG, have been extracted
from the input image. We describe these feature extraction
strategies in the following text.

Fig. 3. Top-level architecture of the proposed CBIC system.
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2.1.1. Histogram of oriented gradients (HOG) features
HOG features were initially proposed by Dalal et al. in 2005

[21]. In subsequent years, HOG features have been extensively
used in various applications of computer vision, like human
detection [22,23], face recognition [24], and disease diagnosis
[25,26].

HOG features provide discriminative and robust edge-based
information. Therefore, HOG features are expected to better
exploit the well-defined and sharp edges present in colon biopsy
images. In order to compute HOG features, the original image is
divided into a pre-defined number of square blocks, and gradient
of the blocks is obtained by applying the following two filters:

Horizontal : ð�1 0 1Þ
Vertical : ð�1 0 1ÞT

Gradient orientations are calculated for each block by using
gradients of the blocks obtained by applying the above-
mentioned horizontal and vertical filters. Local histograms are
then computed for each small block. The histograms count
frequency of gradient orientations in local portions of the image.
In order to overcome the local variability in the blocks, histograms
are usually normalized according to the values of histograms of
local neighborhood cells. Several methods exist for histogram
normalization, like L1-norm, L2-norm, L1-sqrt, and L2-hys. It has
been proved by Dalal et al. [21] that L2-norm, L1-sqrt, and L2-hys
yield almost similar performance, whereas L1-norm yields slightly
lower performance. We have also obtained the same conclusion on
our dataset of colon biopsy images, therefore, we have used
L2-norm in this research work owing to the similar performance
of L2-norm, L2-hys, and L1-sqrt. The Matlab implementation
provided by Ludwig et al. [27] has been used to calculate HOG
features in this work. Different factors influence the performance
of HOG features, such as number of bins, number of horizontal and
vertical partitions of the image. The performance of HOG features
has been analyzed over a potential range of values for the said
parameters, and is presented in Section 4.3.1.

2.1.2. Proposed CCSM features
Recently, the use of color features has enormously increased in

classification related applications owing to their discerning nature
for different types of objects. The combination of color features
with texture features also improves classification rate [28,29].

Normal and malignant colon tissues though comprise pink,
white and purple clusters corresponding to connecting compo-
nents, epithelial cells, and glands, respectively. But, the overall
texture, and color distribution of different biological structures,
heavily varies between normal and malignant colon biopsy
images. For instance, in normal colon tissue images, epithelial
cells (represented by white color) are usually aligned in a circular
region as shown in Fig. 1(a) (see Introduction). However, in
malignant colon tissue images, epithelial cells are merged with
the connecting tissue and lumen, thereby resulting in an amor-
phous shape in which different colors have random appearance as
shown in Fig. 1(c) (see Introduction). Therefore, we need a
technique that could capture variation in the texture and color of
the normal and malignant colon biopsy images simultaneously.
We speculated and experimentally observed that statistical
moments of individual color components of the colon images are
able to better model such a texture and color variation.

Two color models, namely RGB and HSV, have been used, and
statistical moments have been independently extracted for R, G, B,
H, S, and V components of these models. The resultant feature set
has been named color components based statistical moments
(CCSM). The rationale for using six color components is to capture
maximum possible information about the texture of images from
the perspective of each color channel. Individual color components
of the two models for a colon biopsy image have been shown in
Fig. 4, wherein we see that each color component has a well-
defined texture that better represents the colon biopsy image
compared to a gray-scale image.

We have captured this texture based information by calculating
statistical moments. The general expression for nth statistical
moment [30] about mean is given by the following equation:

μn ¼ ∑
I�1

i ¼ 0
ðzi�mÞnpðziÞ ð1Þ

where zi is the random variable realized by pixels’ intensity values,
p(zi) is the discrete probability of the intensity level zi, m is the
mean intensity level, and I is the number of possible intensity
levels in the image. We have used first four statistical moments in
this work, namely mean, standard deviation, skewness and kur-
tosis, corresponding to n¼1, 2, 3, 4.

The generalized feature vector for individual color components
(both in RGB and HSV model) is represented by the following

Blue ComponentGreen ComponentRed ComponentRGB Image

HSV Image Hue Component Saturation Component Value Component

Fig. 4. Individual color components of RGB and HSV model for a colon biopsy image.
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expression:

cx ¼ ½μx
1μ

x
2μ

x
3μ

x
4d

x�T 8xAfR;G;B;H; S;Vg ð2Þ

where μx
n represents nth statistical moment computed from

component x of the input image. In addition to the statistical
moments, median is also computed for each color component and
is represented by dx in Eq. (2). Individual feature vectors of color
components are then combined to form a composite CCSM feature
vector c, which is represented in the following equation:

c¼ ½cTRcTGcTBcTHcTScTV �T ð3Þ

2.1.3. Proposed Haralick texture features
Haralick texture features, originally proposed by Haralick [31],

find applications in various domains of medical image analysis
such as diagnosing diseases related to skin [32], carotid artery [33],
liver [34], brain [35–37], abdomen [38], and breast [39]. Haralick
texture features produce a spatial gray-level dependence matrix
(SGLD), which encapsulates the spatial relationship between pixels
of an image. Each (i, j)th element in SGLD describes the number of
times pixels with intensity values i and j occurred in a certain
relationship in the input image. The relationship may be specified
in two ways: (1) horizontal and vertical distance of neighbors with
the pixel of interest, and (2) the spatial relationship between pixel
of interest and neighbors lying at various orientations e.g.
θ¼ 01; 451; 901; 1351. In this research work, we have specified
the relationship by method 1 with both horizontal and vertical
offset set to 1. Given the SGLD matrix of an input image, the
following four statistical features have been computed.

Contrast: Measures the intensity contrast between a pixel and
its neighbors over the entire image

t ¼ ∑
K

i ¼ 1
∑
K

j ¼ 1
ði� jÞ2pij

Correlation: Measures the degree of correlation between a pixel
and its neighbors over the entire image

ρ¼ ∑
K

i ¼ 1
∑
K

j ¼ 1

ði�mrÞðj�mcÞpij
srsc

Energy: Measures uniformity in the image

e¼ ∑
K

i ¼ 1
∑
K

j ¼ 1
pij

2

Homogeneity: Measures the spatial closeness of the distribution
of elements in G to the diagonal

o¼ ∑
K

i ¼ 1
∑
K

j ¼ 1

pij
1þji� jj

where i and j represent row and column indices of the SGLD
matrix, respectively. The term K is the number of quantized
intensity levels. pij is the (i, j)th element of SGLD divided by the
sum of its elements. The terms mr, and mc are the mean, and sr

and sc are the standard deviation of rows and columns of SGLD,
respectively.

In this work, we have not only computed Haralick features in
traditional way (i.e. from gray-level image), but also proposed two
variants of Haralick features based on the two color models

i.e. RGB and HSV. These variants of Haralick features are described
as follows:

1. Haralick-GL: These are the traditional Haralick features in
which SGLD matrix is calculated from gray-scale colon biopsy
image. Four texture measures (contrast, correlation, energy and
homogeneity) are computed from the matrix. The feature
vector of Haralick-GL features is given in the following equa-
tion:

hgl ¼ ½tρeo�T ð4Þ

2. Haralick-RGB: This is a color models based variant of Haralick
features in which three SGLD matrices are calculated separately
from R, G and B components of RGB colon biopsy image. The
aforementioned texture measures, separately computed from
each SGLD matrix, are combined to form final feature vector of
size 12.

3. Haralick-HSV: Haralick-HSV features are computed from H, S
and V components of HSV color model in a similar fashion as
Haralick-RGB features are computed. The texture features,
separately calculated from SGLD matrices of H, S and V
components, are combined to form a final feature vector of
size 12.

The generalized feature vector for individual color components
(both in RGB and HSV color models) is given in the following
equation:

hx ¼ ½txρxexox�T 8xAfR;G;B;H; S;Vg ð5Þ
Individual feature vectors of color components are then combined
to form Haralick-RGB (hrgb) and Haralick-HSV (hhsv) feature vec-
tors, which are given in Eq. (6) and (7), respectively:

hrgb ¼ ½hT
R hT

G hT
B�T ð6Þ

hhsv ¼ ½hT
H hT

S hT
V �T ð7Þ

2.2. Feature reduction

In classification problems, high dimensionality of training
dataset and the presence of irrelevant/redundant features may
cause the classification algorithms to suffer in accurate prediction
of the samples and tractable computational performance. There-
fore, relevant features must be selected prior to training the
classifier. Fundamentally, there exist two types of traditional
feature selection methods: filters and wrappers. Filtering methods
are essentially data pre-processing methods, wherein features are
selected based on their relevance or discerning power with
reference to the target classes. Since there may be features, which
though have high relevance but are correlated with each other.
Therefore, there is a possibility that features selected by these
methods may be highly correlated i.e. redundant. In wrapper type
methods, feature selection is wrapped around a learning method
i.e. the usefulness of a feature is directly judged by the estimated
accuracy of the learning method. Therefore, the feature set
selected by these methods just matches well with the character-
istics of the employed learning method, and thereby limiting the
generalization capability of the feature set.

In this research work, mRMR method [40], which is an exten-
sion of minimum redundancy based filter method, has been used
as a feature selection strategy to select discerning features from
individual as well as hybrid feature sets. The mRMR method caters
the criteria of both redundancy and relevance for feature selection,
thereby resulting in a relevant and non-redundant feature set.
Moreover, mRMR is not associated with a particular learning
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method, therefore it results in a generalized feature set. Further,
mRMR models the problem of feature selection as a series of
smaller scale problems, each of which only involves two variables.
Hence, the estimation of joint probabilities is more robust, and the
results of mRMR are better compared to ranking and filter based
methods. Yun and Yang [41] have also experimentally proved the
superior performance of mRMR compared to various other feature
selection methods.

2.2.1. Minimum Redundancy Maximum Relevance (mRMR)
The mRMR method has the objective to maximize the inter-

class and minimize the intra-class variances. It accomplishes this
objective by selecting features, which show maximum relevance
to the target labels and have minimum redundancy amongst them
[40]. Generally, mutual information amongst the features as well
as amongst the features and the target labels can be utilized to
calculate relevance and redundancy scores of the features. As it is
generally not possible to achieve both the objectives simulta-
neously, therefore, a tradeoff is established between the two
objectives.

For a given feature set F comprising M training samples of N
features each, the redundancy of the feature set R(F) is the average
value of all mutual information values between all the feature
pairs.

RðFÞ ¼ 1

N2 ∑
N

i;j ¼ 1
Iðf i; f jÞ where f i; f jAF ð8Þ

where fi and fj represent the ith and jth features in F, respectively,
and I(fi, fj) represents the mutual information between the
features fi and fj, which can be calculated using the following
expression:

Iðf i;f jÞ ¼∑
x;y
pðf i;x; f j;yÞlog

pðf i;x; f j;yÞ
pðf i;xÞpðf j;yÞ

 !
where x;y¼ 1;2;3; :::;M

ð9Þ
where fi,x and fj,y are xth and yth elements of feature vectors fi and
fj, respectively. p(fi,x, fj,y) shows the joint probability density
function of fi,x, and fj,y. The terms p(fi,x) and p(fj,y) represent
marginal probability density functions of fi,x, and fj,y, respectively.

Similarly, for the target labels l, where l¼�1 represents normal
and l ¼þ1 represents malignant labels, the relevance of the
feature set F for the class l, denoted by V(F,l), is defined by
the average value of all mutual information values between the
individual feature fi and the class l as follows:

VðF; lÞ ¼ 1
N

∑
N

i ¼ 1
Iðf i; lÞ where f iAF and lA �1; þ1f g ð10Þ

I(fi,l) denotes the mutual information between the feature vector fi
and the class label l. It can be calculated using the following
equation:

Iðf i; lÞ ¼∑
x
pðf i;x; lÞlog

pðf i;x; lÞ
pðf i;xÞpðlÞ

� �
where x¼ 1;2;3; :::;M ð11Þ

Here p(fi,x,l) is the joint probability density function of fi,x and
target label l. The terms p(fi,x) and p(l) show the marginal
probability density functions of fi,x and target label l, respectively.

The objective is to select the set of features which yields
maximum relevancy V and minimum redundancy R. As both the
objectives are usually not achievable simultaneously, therefore,
Eq. (12) establishes a tradeoff between the two objectives by
combining Eqs. (8) and (10) as follows:

mRMR¼max
F

½VðF; lÞ�RðFÞ� ¼max
F

1
N

∑
N

i ¼ 1
Iðf i; lÞ�

1

N2 ∑
N

i;j ¼ 1
Iðf i; f jÞ

" #

ð12Þ

Let mi be the set membership indicator function for the feature
vector fi, so that mi¼1 indicates the presence and mi¼0 indicates
the absence of the feature fi in the globally optimal feature set,
then Eq. (12) may be written as an optimization problem as
follows:

mRMR¼ max
mA f0;1gN

∑N
i ¼ 1Iðf i; lÞmi

∑N
i ¼ 1mi

�
∑N

i;j ¼ 1Iðf i; f jÞmimj

ð∑N
i ¼ 1miÞ2

" #
ð13Þ

Thus, the feature set determined using mRMR is expected to
contain values which not only bear maximum relevancy to the
target labels, but are non-redundant as well [40].

2.3. Training/testing data formulation

An important phase of the proposed CBIC system is training/testing
data formulation. In statistical prediction, three cross-validation meth-
ods, namely sub-sampling, independent dataset test, and jackknife are
used to examine the effectiveness of a classifier in practical applica-
tions. A recent review by Chou [42] demonstrates that among the
three methods, the jackknife cross-validation test is believed to be
least arbitrary, rigorous, and most objective because of its ability to
yield a unique result for a given dataset. In medical diagnosis systems,
it is highly desirable to yield unique output against a sample no matter
how many times we test the sample. Therefore, the jackknife test has
been increasingly used by the researchers for investigating the
performance of various classifiers in medical diagnostic systems
[33,43,44]. Consequently, the jackknife 10-fold cross-validation has
been employed in this study to examine the anticipated success rates
of the classifiers. In a certain iteration of 10-fold cross-validation, nine
folds have been used for training, and the 10th fold has been
employed for testing based on the training performed on nine folds.
The process has been repeated 10 times until classes of all the samples
in all the folds have been determined.

2.4. Classification model

SVM classifier, originally proposed by Vapnik [45], has been
quite successfully used in several medical diagnosis applications
[46–52]. We have used the SVM classifier with different kernels for
classification of colon biopsy images using the features described
in Section 2.1. In the following text, we describe the concept of
SVM classification in detail.

Consider a training dataset QAF comprising Z training samples
q1;q2; :::;qZ , and target labels t ¼ ½t1; t2; :::; tZ �T where tZAf�1; þ1g;
z¼ 1;2; :::; Z. The data that are being classified using the SVM kernel
may be linearly or non-linearly separable. For linearly separable data,
the ultimate aim of classification is to design a linear decision surface,
which correctly classifies the training samples. Such a decision surface
is given in the following equation:

f ðqÞ ¼wT : qþbias¼ 0 ð14Þ
However, such a decision surface, defined by its direction (weight)
vector w and position (bias) in the space, may not be unique.
Therefore, the objective is to select a direction w of the decision
surface such that the distance of the surface to the nearest points of
the two classes is maximum. The nearest points are called support
vectors, and the distance of the nearest points from the decision
surface is called margin. For binary classification of samples into
normal and malignant classes, candidate decision surfaces are normal-
ized in such a way that value of f(q) for the support vectors is equal to
þ1 for malignant class and �1 for normal class. Therefore, the points
of the normal and malignant classes, which are correctly classified,
have values of f(q) less than �1 and greater than þ1, respectively. The
problem may be formulated as given below, and can be solved using
optimization techniques for non-linear objective function subjected to
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linear inequalities [53]:

minimize: jjwjj2
subject to : tZ ðwTqZþbiasÞ Z1; z¼ 1;2; :::; Z

where weight vector w of the optimal decision surface is a linear
combination of the support vectors.

For linearly non-separable data, there are three cases of the
samples of the training dataset. First, training points may fall on
the correct side of the decision surface and behind margin. Second,
training points may fall on the correct side of the decision surface,
but inside margin. Third, training points may fall on the wrong
side of the decision surface. The objective is to select a decision
surface such that points corresponding to second and third cases
are minimum. A penalty term is added to the objective function to
minimize the points falling inside margin or on the wrong side of
the margin. Let ξ¼ ½ξ1; ξ2; :::; ξz� be a vector comprising error terms
corresponding to Z training samples in the dataset. Therefore, the
problem for linearly non-separable data may be formulated as the
following:

minimizes : jjwjj2þc ∑
Z

z ¼ 1
ξz

subject to : tzðwTqzþbiasÞZ1�ξz; z¼ 1;2; :::; Z

where ξz¼0, 0oξzo1, and ξz41 for points corresponding to first,
second and third cases, respectively. The term c is the penalty
parameter associated with the penalty term

∑
Z

z ¼ 1
ξz:

When data is not linearly separable, SVM maps the data from
lower dimension J to a higher dimension Jn through a non-linear
mapping ΦðqÞso that Φ : RJ-RJn, Jnb J. The data becomes easily
separable in the higher dimension Jn. A non-linear decision surface
f ðqÞ between the classes can be constructed in terms of kernel
functions [53]

f ðqÞ ¼ ∑
SP

z ¼ 1
αztzKðq; rÞþbias ¼ ∑

SP

z ¼ 1
αztzΦðqÞUΦðrÞþbias ð15Þ

where SP is the number of support vectors. The terms αz and tz,
respectively, are the Lagrange multipliers and target labels asso-
ciated with the support vectors.

In SVM, two types of kernel functions, i.e. local (RBF) kernels
and global (linear, polynomial, sigmoid) kernels are commonly
used. The measurement of local kernels is based on a distance
function. On the other hand, the performance of global kernels
depends on the dot product of data samples. To introduce diversity
in the ensemble classifier, we have used one local kernel (Gaussian
RBF kernel) and two global kernels (linear and sigmoid kernels) for
classification. Further, different kernels of SVM adopt different
mechanisms for data classification. For instance, sigmoid and RBF
kernels draw non-linear decision surfaces for classification of data,
whereas linear SVM demarcates a linear boundary between the
classes. Linear, RBF, and sigmoid kernels of SVM are mathemati-
cally defined by Eqs. (16), (17) and (18), respectively:

Kðq; rÞ ¼ qT :r ð16Þ

Kðq; rÞ ¼ expð�γjjq�rjj2Þ ð17Þ

Kðq; rÞ ¼ ½γoq; r4þr� ð18Þ
The optimal parameter values of kernels are computed using grid
search. All these SVM kernel functions share one common cost
parameter c, which is basically the constraint violation cost
associated with the data point occurring on the wrong side of
the decision surface. The parameter γ in the RBF and sigmoid

kernel functions represents the width of Gaussian functions.
The parameter r is the offset of sigmoid kernel. The selection
of optimal values of SVM parameters will be discussed in
Section 4.3.2.

2.5. Ensemble classification

In recent times, ensemble classification has gained much
popularity over standalone classification methodologies [54,55].
This popularity is attributed to better classification rate produced
by ensemble framework for most applications. In this research
study, we have proposed an ensemble classifier for the detection
of cancer in colon biopsy images. The proposed ensemble has been
developed by stacking the predictions of individual classifiers. In
this manner, a discriminating decision space is constructed that
helps in better identification of samples compared to original
decision space [56]. In this study, linear, RBF and sigmoid kernels
of SVM have been used as base classifiers. The final predictions of
the proposed ensemble classifier have been acquired by using
majority voting on predictions of base classifiers.

3. Performance measures

The proposed CBIC system has been quantitatively evaluated
using well-known performance measures such as accuracy, sensi-
tivity, specificity, Mathew’s correlation coefficient (MCC), F-score,
Kappa statistics, and receiver operating characteristics curve (ROC).
Generally, a particular measure of accuracy takes into account a
certain factor underlying the yielded classification results. However,
we use multiple classification measures in order to obtain more
reliable comparison. Normal and malignant images, respectively,
correspond to negative and positive samples. In this context, true
positive (TP) and true negative (TN), respectively, represent the
number of malignant and normal samples, which are correctly
classified. Likewise, false positive (FP) and false negative (FN),
respectively, represent the number of normal and malignant
samples, which are incorrectly classified.

3.1. Accuracy

The classification accuracy of a technique depends upon the
number of correctly classified samples (i.e. true negative and true
positive) [57], and is calculated using the following equation:

Accuracy¼ TPþTN
N

� 100

where N is the total number of colon biopsy images.

3.2. Sensitivity

Sensitivity is a measure of the proportion of positive samples
which are correctly classified [57]. It can be calculated using the
following equation:

Sensitivity¼ TP
TPþFN

Its value ranges between 0 and 1, where 0 and 1, respectively,
mean worst and best classification.

3.3. Specificity

Specificity is a measure of the proportion of negative samples
which are correctly classified [57]. It can be calculated using the
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following equation:

Specificity¼ TN
TNþFP

Its value ranges between 0 and 1, where 0 and 1, respectively,
mean worst and best classification.

3.4. Matthews correlation coefficient (MCC)

MCC is a measure of the eminence of binary class classifications
[58]. It can be calculated using the following formula:

MCC ¼ TP � TN�FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððTPþFNÞðTPþFPÞðTNþFNÞðTNþFPÞÞ

p
Its value ranges between �1 and þ1, where �1, þ1 and 0,
respectively, correspond to worst, best, and random prediction.

3.5. F-score

F-score is a measure of the accuracy of classification [57].
F-score is a weighted average of precision and recall, and can be
calculated using the following equations:

Precision ¼ TP
TPþFP

Recall¼ TP
TPþFN

F � score¼ 2� Precision� Recall
PrecisionþRecall

The value of F-score ranges between 0 and 1, where 0 means the
worst classification, and 1 means the best classification.

3.6. Kappa statistic

Kappa statistic (κ) measures the agreement between ground
truth and the results of a classification algorithm [59]. The
equation for κ is

κ ¼ PrðaÞ�PrðeÞ
1�PrðeÞ

where Pr(a) is the relative observed agreement among ground
truth and the classification algorithm, and Pr(e) is the hypothetical
probability of chance agreement, using the observed data to
calculate the probabilities of each observer randomly saying each
category. The value of κ varies between 0 and 1, where κ¼1 shown
near to perfect agreement, and κ¼0 shows no agreement between
ground truth and the classification algorithm.

3.7. ROC

An ROC curve is a standard way for graphical representation of the
classification performance of a system [57]. It characterizes the system
over its entire operating range, and is created by plotting true positive
rate (TPR) against false positive rate (FPR). TPR represents the number
of correct positive cases divided by the total number of positive cases.
FPR, on the other hand, is the number of negative cases predicted as
positive cases divided by the total number of negative cases. The terms
TPR and FPR are actually sensitivity and (1�specificity) of the
classification system. In order to plot the ROC curve, the predicted
values (decision values) of a classifier are scaled in the range [0–1], and
the curve is plotted by applying a classification threshold T on the
decision values. If the decision value is greater than T, then the input
sample is allocated to the first class (normal), otherwise to the second
class (malignant). The threshold is varied in the range [0–1], and
TPR/FPR pair is computed at each threshold value. ROC curve is then

plotted between computed TPR and FPR values. In practical applica-
tions, the ROC curve provides a degree of freedom to select the
operating point which best accomplishes the requirements of the
application.

4. Results and discussions

In this section, we present the results of using the proposed
system for identifying normal and malignant colon biopsy images
from the dataset presented in Section 4.1. Individual features as
described in Section 2.1 have been extracted from colon biopsy
images, and multiple hybrid feature sets have been constructed
from the individual feature sets. Individual as well as hybrid
features have been reduced using mRMR method (see Section 4.2).
Majority voting based ensemble classifier has been constructed,
wherein linear, RBF and sigmoid kernels of SVM have been used as
base classifiers. Optimal values of parameters have been selected
for these classifiers as well as for feature selection modules (HOG
and Haralick texture features), and are discussed in Section 4.3.
Then, based on ensemble classification, the performance of
reduced individual and hybrid feature sets has been investigated
in Sections 4.4 and 4.5, respectively. Computational time require-
ments of all the feature sets have been summarized in Section 4.6.
Finally, the performance enhancement achieved by employing
mRMR has been discussed in Section 4.7. All the computations
have been performed on Intel Core i7 with 3.4 GHz processor and
16GB RAM. Matlab computational software for 64 bit windows has
been used in all the experiments. For classification, data has been
scaled in the range 0–1, and 10-fold cross-validation has been
used. Experiments have been performed 20 times, and average
values of performance measures have been reported.

4.1. Dataset

The biopsy samples used in this work have been collected in
the years 2010, 2011, and 2012 from the Pathology Department of
Rawalpindi Medical College, Rawalpindi, Pakistan. The available 68
colon biopsy samples for the said time period have been selected
without any discrimination of race, gender, and age. The samples
have been stained with hematoxylin and eosin, and the thickness
of the tissue section in the biopsy slide is 5–6 mm. The dataset and
ground truth have been prepared under the guidance of classified
histopathologist (Imtiaz Ahmad Qureshi, Assistant Professor) of
the department. The confidentiality of the data has been main-
tained throughout this research work. The hospital has only
provided the information about age and gender of the patients
along with biopsies. Further, patients have agreed before colono-
scopy that the captured biopsy samples may be used for research
purposes. The imaging equipment has been provided by PAEC
General Hospital, Islamabad. The magnification factor of objective
lens of the microscope has been set to 10� , and several RGB
images of colon have been captured at 600�800 resolutions. A
dataset of 174 variable size microscopic RGB images has been
extracted from these RGB images. The number of normal and
malignant images in the dataset is 82 and 92, respectively. There
are 23 well differentiated, 44 moderately differentiated, and 25
poorly differentiated malignant images in the dataset. Further, the
distribution of malignant images into stage A, stage B, stage C, and
stage D is 15, 24, 21 and 32, respectively. There is no image having
stage 0 cancer, because people usually do not carry out routine
tests, thereby resulting in late detection of cancer. The age of the
patients in the dataset varies from 42 to 68. Mean and standard
deviation of the age of patients are 57.11 and 6.35, respectively.
The age varies from 43 to 63 and from 42 to 68 for female and
male patients, respectively. Fig. 5 shows the distribution of 92
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malignant images, whereinwe see that most of the cancer patients
are above 50 years of age.

4.2. Selection of optimal features through mRMR

The mRMR method has been employed to select discerning
features from different feature sets. In this context, mRMR has
been applied to each of the individual and hybrid feature sets, and
the number of features selected by mRMR for each feature set has
been shown in Table 1. Results reveal that mRMR has substantially
reduced the size of feature set in all cases except for the Haralick-
GL features where there is no room for further feature reduction.
The reduced feature set (comprising three or two features) in case
of Haralick-GL features leads to deteriorated performance. The
percentage decrease of more than 96% for larger datasets (fourth
column of Table 1) shows that mRMR has considerably reduced
the size of various feature sets.

4.3. Selection of optimal values for system parameters

The performance of the proposed CBIC system depends on
several parameters, which need to be tuned for optimal perfor-
mance. In the subsequent text, analysis of optimal values of SVM
models and feature selection methods has been presented in
detail. These optimal values have been used in all the subsequent
experiments. It is worthwhile to note that optimal values of the
parameters have been calculated on the reduced feature sets
(discussed in Section 4.2).

4.3.1. Feature selection methods
Performance of HOG features depends upon three factors:

(a) number of horizontal partitions of the image (H), (b) number
of vertical partitions of the image (V), and (c) bin size (B).
Therefore, prior to classifying images using HOG, we have experi-
mentally found the optimal values of these parameters. In this
context, H, V and B have been varied in the potential ranges of
H¼3, 4, 5,…,25, V¼3, 4, 5,…,25 and B¼6, 7, 8,…,25. The step size
of 1 has been used for all the variables in order to fully exploit the
range of possible values. HOG features have been computed for
each particular combination of these parameter values, and the
combination that yields maximum classification performance for
individual as well as ensemble classifier has been selected. HOG
features computed for H¼19, V¼20 and B¼18 yield maximum
classification accuracy, therefore, HOG feature vector calculated at
these values has been used in further experiments.

In order to further demonstrate the individual effect of each
variable on the performance of HOG features, the classification
accuracy has been measured by varying one parameter while
keeping other two fixed at their maximum values. By maximum
values we mean the maximum of the potential set of values i.e. 25
each for H, V and B. Corresponding results are shown in Fig. 6,
wherein we see that the classification accuracy using HOG features
increases as the values of H, V and B increase. The discriminating
capability of HOG features at higher values of H, V and B is
enhanced. The results have been shown in Fig. 6 with the interval
of 3 for the presentation purposes.

Performance of Haralick features significantly depends upon
the size of SGLD matrix. Finding the optimal size of SGLD matrix
for a particular application is a critical task. In this study, we have
extracted different variants of Haralick features at n¼2, 3,…,7
where the size of SGLD matrix is 2n, and measured the classifica-
tion performance by employing base as well as proposed ensemble
classifier. Corresponding results are given in Fig. 7, which reveal
that classification performance keeps on increasing until n¼5. An
increase in the size of SGLD matrix beyond this point leads to little
or no change in the performance. Therefore, the size of SGLD
matrix is set to 32�32 corresponding to n¼5.
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Table 1
Number of features selected by mRMR.

Features Number of
original
features

Number of features
selected by mRMR

Percentage
decrease

CCSM 30 18 40.00
Haralick-GL 04 04 00.00
Haralick-RGB 12 07 41.67
Haralick-HSV 12 08 33.33
HOG 6840 186 97.28
CCSMþHaralick-HSV 42 26 38.10
CCSMþHOG 6870 211 96.93
HOGþHaralick-HSV 6852 197 97.12
CCSMþHOGþHaralick-

HSV
6882 223 96.76
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Fig. 6. Classification performance of HOG features as a function of number of (a) horizontal partitions, (b) vertical partitions, and (c) bins.
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4.3.2. Classification models
Performance of SVM classifiers depends on several parameters.

In this research study, the grid search method [60] has been
employed for selection of optimal parameter values by carefully
setting grid range and step size. The parameter c is common to all
the classifiers. Its optimal value has been obtained by adjusting the
grid range of c¼ ½0; :::;102�with Δc¼ 1 for all the kernels. The
parameter γ is involved in RBF and sigmoid kernels. Its optimal
value has been obtained by adjusting the grid range of
γ ¼ ½0:001; :::;0:1� with Δγ ¼ 0:002 for both the kernels. A para-
meter r is specific to sigmoid kernel only, and its default value
is used.

4.4. Performance analysis of individual feature sets

In this section, we discuss our findings about the performance
of the individual feature sets, which have been acquired after
feature reduction through the mRMR method.

4.4.1. Performance analysis of HOG features
The reduced HOG features have been employed for classifica-

tion of colon biopsy images. Linear, RBF, sigmoid and the proposed
ensembles have been used for this purpose. Corresponding per-
formance measures have been reported in Table 2, which indicate
that HOG features are able to classify the given dataset with good
accuracy. In terms of individual classifiers, the best accuracy,
achieved using HOG features, is 94.86%. However, due to the
exploitation of strengths of multiple classification models in the
proposed ensemble classification, accuracy further increases up to
95.98%, thereby showing a percentage increase of 1.13%. Such a
noteworthy performance validates the suitability of HOG features
for classifying colon cancer dataset. HOG features have been able
to produce excellent results because they realistically model the
sharp edges present in colon biopsy images. Moreover, in normal
colon biopsy tissues, epithelial cells, glands and lumen have an
elliptical structure, which is destroyed in malignant tissues. HOG
features exploit local image structure by dividing an image into
multiple horizontal and vertical partitions, therefore, are better
able to capture the structural variations in normal and malignant
colon tissues. Better sensitivity (¼0.95) and specificity (¼0.98)
prove that HOG features are able to equally distinguish normal and
malignant classes. Further, superior MCC (¼0.92) and F-score
(¼0.96) values show the goodness of HOG features for classifica-
tion of colon biopsy images.

4.4.2. Performance analysis of proposed Haralick texture features
This section presents the capabilities of reduced Haralick-GL,

Haralick-HSV, and Haralick-RGB features for the classification of
colon biopsy images. Linear, RBF, sigmoid and the proposed
ensembles have been employed for the classification of colon

biopsy images. Table 3 demonstrates the performance of different
variants of Haralick texture features.

Table 3 demonstrates that the proposed variants of Haralick
features classify the colon biopsy images with good accuracy.
Haralick-RGB and Haralick-HSV yield 95.98% and 96.55% classifica-
tion accuracy, respectively. This accuracy value is much higher
compared to that of Haralick-GL features (86.21%). These classifi-
cation results also reveal the significance of information contained
by different color components in colon biopsy images. Fig. 4,
shown in Section 2.1.2, demonstrates the changes between differ-
ent color channels of a sample colon biopsy image. In the Haralick-
GL features, this valuable color information is not exploited.
Whereas Haralick-HSV and Haralick-RGB quite handily exploit
color information along with texture information in the colon
biopsy images, which results in much improved classification
performance compared to Haralick-GL features. Among the fea-
tures employed for capturing texture variation, energy and homo-
geneity have good variation in normal and malignant colon
tissues. Therefore, these two features play a vital role among the
four features for classification of normal and malignant tissues.

Only Haralick-HSV features among the two variants of Haralick
features will be used in subsequent sections owing to their better
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Fig. 7. Classification performance of (a) Haralick-GL, (b) Haralick-RGB and (c) Haralick-HSV features as a function of size of SGLD matrix.

Table 2
Performance of HOG features.

Classifier\
Performance measures

Accuracy Sensitivity Specificity MCC F-score

Linear 91.95 0.98 0.85 0.84 0.93
RBF 94.86 0.97 0.93 0.89 0.95
Sigmoid 94.25 0.98 0.90 0.89 0.95
Ensemble 95.98 0.95 0.98 0.92 0.96

Table 3
Performance of Haralick-GL, Haralick-RGB and Haralick-HSV features.

Classifier\
Performance measures

Accuracy Sensitivity Specificity MCC F-score

Haralick-GL
Linear 78.74 0.77 0.80 0.58 0.79
RBF 84.48 0.84 0.85 0.69 0.85
Sigmoid 80.46 0.77 0.84 0.61 0.81
Ensemble 86.21 0.87 0.85 0.72 0.87

Haralick-RGB
Linear 89.66 0.88 0.91 0.79 0.90
RBF 93.68 0.90 0.98 0.88 0.94
Sigmoid 91.38 0.96 0.87 0.83 0.92
Ensemble 95.98 0.93 0.99 0.92 0.96

Haralick-HSV
Linear 92.53 0.89 0.96 0.85 0.93
RBF 94.83 0.91 0.99 0. 90 0.95
Sigmoid 93.10 0.87 1.00 0.87 0.93
Ensemble 96.55 0.97 0.96 0.93 0.97
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performance. Almost equal values of sensitivity (¼0.97) and
(¼0.96) prove that Haralick-HSV features are capable of identify-
ing normal and malignant tissues equally well. Similar phenom-
enon is observed among other performance measures, which
verifies the reliability of Haralick-HSV features. Particularly, MCC
value for Haralick-HSV is very good which shows the effectiveness
of the classification results.

4.4.3. Performance analysis of proposed CCSM features
In this section, a detailed analysis on the performance of

reduced CCSM features for classification of colon biopsy images
is presented. Linear, RBF, sigmoid kernels of SVM classifier, and the
proposed ensemble strategies have been employed for the classi-
fication of colon biopsy images using CCSM features. Table 4 shows
the performance measures for CCSM features.

The results in Table 4 demonstrate that the proposed CCSM
features are quite discerning for the classification of colon biopsy
images, and have been able to yield as high as 96.68% classification
accuracy. The values of other performance measures are also in
accordance with the accuracy values, thereby emphasizing the
consistency of classification results. CCSM features have been able
to yield better sensitivity (¼0.98) and specificity (¼0.96) values
which prove the fact that CCSM features can equally identify
normal and malignant samples. Note that among different types of
individual features, CCSM features yield overall maximum perfor-
mance both for base and ensemble classifiers. This is due to the
combination of statistical measures from different color channels,
which capture the underlying model of our classification problem
more vividly. Among the six different color channels, hue and
saturation are the most discerning for the classification of normal
and malignant colon biopsy images compared to other statistical
features.

4.5. Performance analysis of hybrid feature sets

In this section, we present the performance analysis on hybrid
feature sets constructed by the combination of features discussed in
Section 2.1. The hybrid features have been developed by simple
concatenation of individual feature sets. Hybrid feature sets have
been reduced using mRMR as discussed in Section 4.2. Colon biopsy
images have been classified into normal and malignant classes
based on reduced hybrid feature sets. The classification results have
been reported for ensemble of the base classifiers (linear, RBF and
sigmoid SVM). Among different variants of Haralick features, only
Haralick-HSV, owing to its better discerning characteristics (see
Table 3), has been used for hybridization. Table 5 presents classifi-
cation results for different hybrid feature sets.

The first three hybrid feature sets, each comprising two feature
types, have been developed by hybridizing the three individual
feature types. The classification accuracy of CCSMþHOG,
CCSMþHaralick-HSV and Haralick-HSVþHOG features is 97.13%,
97.13% and 97.70%, respectively. This classification accuracy is
marginally higher compared to that of HOG (¼95.98%), CCSM
(¼96.68%), and Haralick-HSV (¼96.55%) features. Among the
hybrid feature sets, the feature set comprising Haralick-HSV and

HOG produces better classification performance for all the evalua-
tion measures. Finally, for the 3-tuple combination (i.e. CCSMþHar-
alick-HSVþHOG), overall highest classification accuracy (¼98.85%)
has been obtained.

Performance of the proposed features has also been investi-
gated using ROC curves. Fig. 8 demonstrates the performance of
various individual and hybrid feature vectors. The ROC curves of all
the features (individual and hybrid) are well above the diagonal
line, which proves the fact that all the features yield good
classification results. Further, Fig. 8 demonstrates that hybrid
features marginally improve performance compared to their
individual counterparts because ROC curves of all the hybrid
feature sets are slightly above the curves of individual feature sets.

Finally, we provide visual classification results for a few colon
biopsy images in Fig. 9. These results have been obtained by using
hybrid feature vector comprising CCSM, HOG and Haralick-HSV
features. Fig. 9 presents 12 sample normal and malignant images,
which are correctly classified by the proposed CBIC system. Labels
below the figures are assigned by the proposed classification
system. Normal images in the first row of Fig. 9 have almost similar
structure. Epithelial cells are lined in circular regions, and the lumen
is surrounded by the epithelial cells. As the proposed system was
trained on this standard regular structure of normal tissues, there-
fore, it has successfully identified the unseen normal images as well.
Second and third rows in Fig. 9 demonstrate the malignant images,
which are correctly classified by the proposed system. These images
have amorphous shape, and the regular structure of normal tissues
is not visible in these images. Boundaries between different con-
stituents of the tissues have disappeared. Therefore, the system has
rightly identified these images as malignant. Moreover, malignant
images with diverse grades (poorly differentiated, moderately
differentiated, and well differentiated) have been shown in Fig. 9
to demonstrate the capability of the system to successfully identify
a malignant image regardless of its grade.

Table 4
Performance of CCSM features.

Classifier\
Performance measures

Accuracy Sensitivity Specificity MCC F-score

Linear 95.40 0.93 0.98 0.91 0.96
RBF 96.55 0.97 0.96 0.93 0.97
Sigmoid 95.98 0.93 0.99 0.92 0.96
Ensemble 96.68 0.98 0.96 0.95 0.96

Table 5
Performance of hybrid feature sets.

Hybrid feature sets
Accuracy Sensitivity Specificity MCC

F-
score

CCSMþHOG 97.13 0.99 0.95 0.94 0.97
CCSMþHaralick-HSV 97.13 0.96 0.99 0.94 0.96
Haralick-HSVþHOG 97.70 0.97 0.98 0.96 0.97
CCSMþHOGþHaralick-
HSV

98.85 0.98 1.00 0.98 0.99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1-Specificity (FPR)

Se
ns

iti
vi

ty
 (T

PR
)

HOG
Haralick-HSV
CCSM
CCSM + Haralick-HSV
CCSM + HOG
Haralick-HSV + HOG
CCSM + Haralick-HSV + HOG

Fig. 8. ROC curves for various hybrid feature vectors.
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Out of 174 images, there are only two images which are
misclassified by the proposed CBIC system. These images are shown
in Fig. 10. These are actually well differentiated malignant colon
tissues, which are incorrectly classified as normal by the proposed
system. We can observe from the structure of these tissues that
they lie at the boundary between normal and well differentiated
malignant tissues. In these tissues, gland boundary is preserved,
and the overall appearance of these tissues resembles with the
normal ones, therefore, the proposed system finds difficulty in
identifying such images. It is worthwhile to note that these two
images have been acquired from the same biopsy slide. Therefore,
we can conclude that only one sample (patient) is not correctly
diagnosed among the 68 by the proposed CBIC system.

4.6. Computational time requirements of various feature sets

In this section, we analyze the computational time require-
ments of various individual and hybrid feature sets. In this context,
the CPU time involved in the extraction of features and the
classification time taken by different classifiers for each reduced
feature set have been measured in seconds. Corresponding results
are provided in Table 6.

Feature extraction time has been separately calculated for each
image, and the average time involved in the extraction of a single
image is shown here. The extraction time for hybrid feature sets
has been calculated by adding the extraction time of their
individual constituent feature sets. The results in Table 6 reveal

lamroNlamroNlamroN Normal 

Malignant 
(well differentiated) 

Malignant  
(well differentiated)

Malignant  
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Malignant 
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Malignant 
(moderately differentiated)

Malignant 
(poorly differentiated)

Malignant 
(poorly differentiated)

Malignant 
(poorly differentiated)

Fig. 9. Examples of the normal, poorly differentiated, moderately differentiated, and well differentiated malignant colon tissues that are correctly classified by the proposed
CBIC system.

Malignant 
(well differenatiated) 

Malignant 
(well differentiated) 

Fig. 10. The two well differentiated malignant colon tissues, which are incorrectly classified as normal.
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that the average computational time required for the extraction of
Haralick-GL, Haralick-RGB, and Haralick-HSV features from a colon
biopsy image is 0.037, 0.065 and 0.078 s, respectively, which is
very small. Likewise, the average time to compute CCSM and HOG
features of a colon biopsy image is 0.05 and 1.283 s, respectively.
The average time to compute a hybrid feature set comprising all
the three feature types is 1.411 s only which proves that the
proposed technique is very fast.

The third column of Table 6 shows the size of reduced feature
vectors. The classification time has been separately calculated on
reduced feature sets for each classifier, and is shown in column 4,
5 and 6 of Table 6. It is actually the time of applying cross-
validation on total dataset to calculate labels of all the samples by
a particular classifier. The results reveal that sigmoid classifier
consistently takes more time for classification compared to other
classifiers. Further, we can conclude from the results that classi-
fication time increases with an increase in the size of a feature set.

4.7. Analysis of performance boost up using mRMR

In this section, we present an analysis on the performance
enhancement achieved by employing mRMR. The performance has
been measured on original feature sets, and then compared with
the performance on reduced feature sets (discussed in Sections 4.4
and 4.5). The performance has been analyzed in two respects:
classification accuracy and computational time required for classi-
fication. Fig. 11 shows the classification accuracy for original and

reduced feature sets. It is observed from Fig. 11 that features
selected by mRMR enhance the performance both for individual
and for hybrid feature sets. This is because mRMR selects features,
which bear maximum relevancy to the target labels and share
minimum redundancy/overlapping among themselves.

The mRMR method not only boosts the classification perfor-
mance of different feature sets, but also cuts down the time
needed in the classification. Fig. 12 shows the time taken by
different classifiers in the classification of original as well as
reduced feature sets. Fig. 12 further demonstrates that mRMR
has substantially reduced the classification time of all the class-
ifiers.

4.8. Performance comparison of CBIC with existing schemes

The performance of the proposed CBIC system has been
compared with previously proposed approaches of colon biopsy
image classification. In this context, five techniques [11–15] have
been selected from the contemporary literature for comparison.
We have implemented these techniques in Matlab, and evaluated
classification performance measures on the dataset described in
Section 4.1. In order to obtain a fair comparison with CBIC, we have
used optimal values of the parameters used in these techniques.
The selection of optimal values of these parameters is summarized
in Table 7. The techniques proposed by Esgiar et al. [11] and
Masood et al. [14] employ multiple classifiers. The second column
contains the classifiers employed by these techniques, and bold
face entry within the second column represents the classifier
which yields maximum performance among the employed classi-
fiers by a particular technique. The bold face entries within the
third column correspond to the parameters’ values where max-
imum performance is achieved for each classifier by a particular
technique.

Table 8 demonstrates the performance comparison of CBIC
with these techniques in terms of various quantitative perfor-
mance evaluation measures. The data samples have been permu-
tated 20 times to get 20 different versions of the dataset. For each
combination of the parameter values given in Table 7, classifica-
tion results have been collected over 20 different permutations of
the dataset. Mean rates and standard deviations have been
calculated for 20 different results against each combination of
the parameter values. Table 8 shows the mean rates and standard
deviations for that combination of parameter values where

Table 6
Computational time required for the classification of individual and hybrid
feature sets.

Feature sets Feature
extraction
time (s)

Size of
reduced
feature vector

Classification time (s)

Linear RBF Sigmoid

CCSM 0.050 18 06 18 21
Haralick-GL 0.037 04 02 03 05
Haralick-RGB 0.065 07 03 04 07
Haralick-HSV 0.078 08 04 05 10
HOG 1.283 186 25 42 55
CCSMþHaralick-HSV 0.128 26 09 16 22
CCSMþHOG 1.333 211 51 65 75
HOGþHaralick-HSV 1.361 197 45 53 67
CCSMþHOGþHaralick-

HSV
1.411 223 58 69 83
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Fig. 11. Performance enhancement in terms of classification accuracy for individual and hybrid feature sets reduced through mRMR (on x-axis, L, linear; R, RBF; S, sigmoid;
E, ensemble, and in legend, O, original feature set; R, reduced feature set).
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maximum average classification accuracy is achieved. It is note-
worthy that results reported for [11,14] are corresponding to LDA
and SVM classifiers since they yield maximum performance as
discussed in the previous paragraph.

Our proposed approach has produced highest classification
accuracy (98.85%) for colon biopsy dataset, which is 6.90% higher
than the highest accuracy yielded by Altunbay et al. [15]. Similarly,
there is a significant increase in sensitivity (¼0.98), specificity
(¼1.00), MCC (¼0.98) and F-score (¼0.99) values. The perfor-
mance of the proposed approach is boosted due to the proposed
hybrid feature space and ensemble classification. It can be con-
cluded reasonably that the better performance of CBIC is attrib-
uted to the fact that previous techniques consider features which
take into account only a certain aspect of input images e.g. image
texture. On the other hand, our proposed scheme uses rich hybrid
feature vector wherein each individual feature category captures

potentially exclusive information about the image. For instance,
HOG features capture the variation in the shape of epithelial cells,
which are elliptic in normal tissues, but have almost amorphous
shape in malignant tissues. Moreover, normal colon tissues have
sharp and well-defined boundaries of different constituents,
whereas these boundaries are merged in malignant tissues. HOG
features quite handily capture the variation in boundary (see
Section 4.4.1), therefore, are better able to discriminate normal
and malignant colon biopsy images. The Haralick features are
commonly used for measuring texture features in an image. The
four different Haralick features (correlation, contrast, energy and
homogeneity) employed for capturing texture information discri-
minate the texture of normal and malignant images quite effec-
tively. For example, normal colon tissues have regular structure,
whereas this structure is strongly disturbed in malignant images.
The textural feature of ‘energy’ captures this information

HOGCCSM Haralick-HSV CCSM +HOG 
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Fig. 12. Performance enhancement in terms of classification time for individual and hybrid feature sets reduced through mRMR (on x-axis, L, linear; R, RBF; S, sigmoid, and in
legend, O, original feature set; R, reduced feature set).

Table 7
Optimal parameters used for the evaluation of existing colon cancer detection technique.

Classification techniques Classifier Parameters

Esgiar et al. [11] KNN Horizontal window size¼5�5, 7�7, 9�9, 11�11, 13�13,…,19�19, 25�25
Vertical window size¼5�5, 7�7, 9�9, 11�11, 13�13,…,19�19, 25�25
Number of neighbors for KNN classifier¼1, 3, 5, 7, 9, 11

LDA Horizontal window size¼5�5, 7�7, 9�9, 11�11, 13�13,…,19�19, 25�25
Vertical window size¼5�5, 7�7, 9�9, 11�11, 13�13,…,19�19, 25�25

Esgiar et al. [12] KNN Number of neighbors for KNN classifier¼1, 3, 5, 7, 9, 11
Masood et al. [13] SVM c (cost of polynomial SVM)¼¼ 1, 2, 3, 4, 5,…,86,…,1000

ε¼0.001, 0.002,…,0.008,…,2.000
c (cost of Gaussian SVM)¼¼ 1, 2, 3, 4, 5,…,92,…,1000
γ¼0.001, 0.002,…,0.079,…,2.000

Masood and Rajpoot [14] PCA a (used for compactness)¼1, 2, 3, 4,…,20
r (radius)¼2, 3, 4, 5,…,15
b (number of neighbors)¼8, 12, 16, 20, 24
Principal components of PCA¼32

SVM a (used for compactness)¼1, 2, 3, 4,…,20
r (radius)¼2, 3, 4, 5,…,15
b (number of neighbors)¼8, 12, 16, 20, 24
c (cost of Gaussian SVM)¼1, 2, 3, 4, 5,…46, 47,…,1000
γ (Gaussian SVM)¼0.001, 0.002,…,0.056, 0.057,…,2.000

LDA a (used for compactness)¼1, 2, 3, 4,…,20
r (radius)¼2, 3, 4, 5,…,15
b (number of neighbors)¼8, 12, 16, 20, 24

Altunbay et al. [15] SVM Size of the square structuring element¼2, 3, 4, 5
Area threshold to remove smaller components¼15, 20, 25, 30, 35,…,95, 100
c (cost of linear SVM)¼1, 2, 3, 4, 5,…,99, 100, 101,…,1000
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effectively, and performs a major role to discriminate the
normal/malignant images. Moreover, combining the texture infor-
mation from multiple color channels is also a major factor of
improving the classification performance. Finally, CCSM features
exploit the color information from different channels of the
colored colon biopsy images, therefore, yield good classification
results. When individual feature vectors are combined in an
ensemble paradigm, they all reinforce each other and produce
superior classification results.

4.9. Statistical significance analysis of feature sets and classifiers

This section analyzes the significance of the classification
results presented in this paper using Kappa statistics. The perfor-
mance significance has been evaluated from two perspectives.
First, we have analyzed the statistical significance of the perfor-
mance achieved using individual and hybrid features sets. Second,
the performance improvement has been discussed from various
viewpoints.

The performance of various individual and hybrid feature sets
has been shown in Table 9. From the kappa statistics values, we
can see that the individual and hybrid feature sets show good
performance. The values of all these feature sets exceed the
threshold of 0.8, which is supposed to be excellent agreement
between the ground truth and the classification results of the
corresponding feature set [59]. Further, the hybrid feature set,
having kappa statistic of 0.977, shows almost a perfect agreement
with the ground truth.

The significance of the performance improvement has been
discussed from various perspectives such as the improvement of
the proposed scheme compared to previously reported studies,
improvement of the proposed ensemble compared to individual
classifiers, and improvement of the proposed hybrid feature set
compared to individual feature sets.

The values of kappa statistics for Esgiar et al. [11,12], Masood
et al. [13], Masood and Rajpoot [14], Altunbay et al. [15], and the
proposed CBIC system are 0.839, 0.489, 0.745, 0.804, 0.839, and
0.977, respectively. The kappa statistic value of the proposed
ensemble (¼0.977) is better compared to the kappa statistics
value of Altunbay et al. [15] (¼0.839), which performs best
amongst previously reported studies. The results in Table 9 reveal
better performance of ensemble compared to individual classifiers
despite small margin of performance improvement in some cases.

Further, the performance improvement of hybrid feature set
(CCSMþHOGþHaralick-HSV) has been investigated by comparing

its performance with each of the individual features. Two well-
known statistical significance tests, namely McNemar0s exact test
and Fisher’s exact test, have been used. The 1-tailed and 2-tailed
p-values of these results are given in Table 10. These results
indicate that the performance improvement of the hybrid feature
set is marginal only. Based on these p-values, the level of
confidence on the hypothesis “Performance of hybrid feature set
is better compared to individual features” is 490%, 480%, 480%
for HOG, CCSM and Haralick-HSV features, respectively. The
marginal increase in classification performance may be attributed
to the small margin of performance improvement that is left after
more than 96% classification rate of individual features, and the
smaller data size.

5. Conclusion

In this research study, a classification system (CBIC) has been
proposed for predicting cancer in colon tissues. In the proposed
system, hybrid feature set comprising CCSM, Haralick-HSV, and
HOG is constructed. The mRMR method is employed to select
discerning features from the hybrid feature set. The discerning
features are then used in different SVM kernels based ensemble
classification. Working with colon biopsy images, highest classifi-
cation accuracy of 98.85% and 96.68% has been observed with
hybrid and individual feature set (CCSM), respectively. Results
prove that the proposed variants of traditional Haralick features
and statistical moments are promising feature types for classifica-
tion of colon biopsy images. Further, results demonstrate that
hybrid and rich feature space marginally improves the classifica-
tion performance compared to the performance achieved by using
individual features. Likewise, results verify that the ensemble
classifier improves performance compared to individual classifiers.
The efficacy of mRMR method has also been validated in terms of
reduction in classification time and boost up in classification
accuracy. Proposed scheme has also been compared with pre-
viously known colon cancer detection techniques, and an increase
in classification accuracy is observed. The future directions along
this research work are to extend the proposed technique on colon
biopsy images captured at multiple magnification factors, and to
further classify the malignant images into different cancer grades.

Table 8
Performance comparison of the proposed CBIC with existing techniques.

Classification techniques Accuracy Sensitivity Specificity MCC F-score

Esgiar et al. [11] 86.0071.32 0.8970.09 0.9570.04 0.5470.07 0.8470.12
Esgiar et al. [12] 73.1871.78 0.8270.02 0.6770.02 0.4870.03 0.7170.02
Masood et al. [13] 87.9371.52 0.9170.02 0.8370.01 0.7870.02 0.8870.02
Masood and Rajpoot [14] 89.8871.32 0.9270.03 0.8870.02 0.7970.03 0.9170.03
Altunbay et al. [15] 91.9570.95 0.9170.02 0.9370.02 0.8470.03 0.9270.01
Proposed CBIC (hybrid featuresþensemble classification) 98.8570.51 0.9870.01 1.0070.00 0.9870.01 0.9970.00

Table 9
Performance of individual and hybrid feature sets in terms of Kappa statistics.

Feature sets Linear RBF Sigmoid Ensemble

HOG 0.8394 0.8960 0.8847 0.9310
CCSM 0.9080 0.9308 0.9195 0.9423
Haralick-HSV 0.8508 0.8853 0.8627 0.9308
CCSMþHOGþHaralick-HSV 0.9484 0.9510 0.9498 0.9771

Table 10
P-values for McNemar’s exact test and Fisher0s exact test.

Feature
sets

McNemar’s exact test Fisher’s exact test

2�t 1� t Confidence level
(%)

2�t 1�t Confidence level
(%)

HOG 0.180 0.090 490 0.174 0.087 490
CCSM 0.289 0.145 480 0.283 0.142 480
Haralick-

HSV
0.289 0.145 480 0.283 0.142 480
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