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Abstract— Texture is a combination of repeated patterns with 
regular/irregular frequency. It can only be visualized but hard to 
describe in words. Liver structure exhibit similar behavior; it has 
maximum disparity in intensity texture inside and along 
boundary which serves as a major problem in its segmentation 
and classification. Problem gets more complicated when one 
applies simple segmentation techniques without considering 
variation in intensity texture. The problem of representing liver 
texture is solved by encoding it in terms of certain parameters for 
texture analysis. Numerous textural analysis techniques have 
been devised for liver classification over the years some of which 
work equally work well for most of the imaging modalities. Here, 
we attempt to summarize the efficacy of textural analysis 
techniques devised for Computed Tomography (CT), Ultrasound 
and some other imaging modalities like Magnetic Resonance 
Imaging (MRI), in terms of well-known performance metrics.  

Keywords – Texture Analysis; Liver Classification; CT; MRI; 
Ultrasound 

I. INTRODUCTION 
Liver is the largest organ of body and is located in the 

upper left of abdomen. Some important functions of liver 
include metabolizing drugs, clearing toxins from the blood, and 
producing blood proteins and bile to aid digestion. On the other 
hand, it has to put up with some deadly diseases like hepatitis, 
cysts, tumor etc. Liver images have various granular structures 
called texture. Normal liver usually differs with the diseased 
one in terms of intensity texture. This variation helps in 
determining the corresponding disease.  

A Computer-Aided-System (CAD) is a merger of medical 
imaging and tissue characterization techniques, and is widely 
used in liver diagnosis. CAD systems are not the replacement 
for doctors rather they only provide a second opinion during 
diagnosis and strengthen practitioners’ judgment about disease.  

 

Figure 1.  Top Level Layout of Liver CAD System 

A typical CAD system segments liver from image, 
computes texture based features from segmented liver and 

finally, classifies liver into predefined classes of diseases. 
Feature extraction and liver classification steps of CAD heavily 
rely on segmentation accuracy. Inaccurate segmentation 
definitely corrupts the following steps. Several factors which 
make liver segmentation and classification very hard include 
variation in intensity texture inside and along liver boundary, 
bad contrast, least variability between intensity values of lesion 
and its surrounding area, image noise and liver geometry 
between patients. These factors must be taken care of while 
proposing any feature based liver classification method. 

Rest of the paper is categorized as follows. Section 2 
presents an overview of several texture features and texture 
measure methods. Section 3 provides detailed information on 
different texture analysis techniques that have been used for 
liver classification. Section 4 supplies performance review of 
these techniques whereas section 5 concludes the paper. 

II. TEXTURE MEASURE FEATURES AND TECHNIQUES 
Several textural analysis techniques have been proposed to 

extract useful features for reliable liver tissue classification. 
Some extensively used techniques are: 

• Gray Level Difference Statistics (GLDS): GLDS is 
the Probability Density Function (PDF) of pair pixels 
lying at specific distance and having a particular 
intensity value difference. Inter pixel gray level values 
have large variation for fine texture and least variation 
for coarse texture.  

• Spatial Gray level Dependence Matrices (SGLDM): 
SGLDM [1] exploits the fact that spatial relationship 
between gray levels of an image contributes to overall 
texture properties of the image. It computes matrix by 
counting how many times pixels with intensity i and j 
occur at specified offset.  

• Gray level Run length Statistics (RUNL): RUNL [2] 
makes use of the fact that there are consecutive points 
in image having same gray level along a particular 
direction. Coarse texture contains relatively long runs 
than short runs. Opposite is true for fine texture. 

• Gray Level Histogram: It employs intensity 
distribution of image to find out texture parameters. 

• Edge Frequency based Texture Features: These 
features are inversely related to the autocorrelation 
function and are based on distance related gradient. 
Micro-edges and macro-edges can be detected using 
small and large distance operator respectively. 
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• First Order Parameters (FOP): These are independent 
of spatial relation between pixels and describe only 
echogenicity and diffuse variation characteristics. 

• Laws Texture Energy Measure (TEM): TEM [3] uses 
convolution masks of 5x5 to detect various texture 
types. It works on five basic 1D masks convolved to 
produce 25 2D masks. Texture image is then filtered 
with these masks to extract useful features. 

• Fourier Power Spectrum (FPS): This technique is 
useful for regular wave like patterns with a constant 
interval. Fourier transformation provides direction and 
frequency of pattern.  

• Wavelet Features:  These features are derived from 
wavelet transform of the image or Region of Interst 
(ROI). Major types are quincunx, Gabor and dyadic. 

Selection of appropriate textural features plays an important 
role in success of above mentioned textural analysis schemes. 
Some important textural features include: Entropy (ENT), 
Local Homogeneity (LH), Gray Level Distribution (GLD), Run 
Length Distribution (RLD), Angular Second Moment (ASM), 
Contrast (CO), Correlation (CORR), Variance (VAR), Inverse 
Difference Moment (IDM), Standard Deviation (SD), Energy 
(E), Homogeneity (H), Uniformity (U), Sum Entropy (SENT), 
Mean (M), Short Run Emphasis (SRE), and Dissimilarity (D). 

III. LITERATURE REVIEW 
Out of several liver imaging modalities, ultrasound is the 

least expensive but less precise tool for detecting liver 
abnormalities. Conversely, CT scan is the most reliable but at 
the same time costly method of diagnosing liver diseases. A lot 
of liver texture analysis techniques have been proposed in the 
past with major focus on Ultrasound and CT imaging 
modalities. Some of these techniques have been evaluated [4] 
in past but in separate papers. Our study, contrary to previous 
studies, investigates the accuracy of these techniques in a 
single place. Following text elaborates these techniques. 

A. CT Texture Analysis Techniques 
A considerable percentage of liver texture analysis 

techniques are based on CT data. Many authors have put their 
efforts in evaluating and deriving useful information from CT 
liver images. Mir et al., in their work [5], characterized CT 
liver images into normal, visible and invisible malignancy. 
Their approach was based only on an insightful observation of 
features extracted using SGLDM, RUNL and GLDS. Twenty 
CT images from each class were used for computing an 
average value of features by aforementioned techniques. A 
keen observation revealed that features of ENT, LH and GLD 
play their discrimination role.  

Mougiakakou et al. [6] amalgamated several feature 
extractors and NN classifiers for classifying CT liver images 
into normal, hepatic cyst, hemangioma, and HepatoCellular 
Carcinoma (HCC). FOP, SGLDM, GLDS, TEM and FDTA 
were used for feature extraction from ROI. Dimensionality of 
feature vector was reduced using Genetic Algorithm (GA) 
based on [7] because GA reduces features quite robustly [8]. 5 

feature sets were given as input to the NN comprising of 5 
individual NNs each of which was comprised of 4-class NNs 
and was trained by the back propagation algorithm. Learning 
rate and momentum were adaptive. Majority voting and 
weighted voting were used to combine the outputs of 
individual NNs in order to decide about final liver class.  

Mala et al. work was a major effort to recognize diffused 
liver diseases. For this purpose, they developed an automatic 
liver segmentation and classification system [9] using CT scan 
data. First step was to apply morphological operations of 
closing, opening and then adaptive thresholding. Second step 
was complementing the image followed by multiplying the 
complemented image with original one to segment liver. Third 
step was to use orthogonal wavelet transform to compute 
horizontal, vertical and diagonal details. Details were further 
utilized to calculate eighteen textural features such as M, SD, 
ASM, CO, E and ENT for the distance of 4 pixels. Finally, they 
used features for Probabilistic Neural Network (PNN) training 
and classification. Mala et al. further extended their work [9] 
and proposed a new scheme [10]. They classified benign and 
malignant tumor using CT data by amalgamating biorthogonal 
wavelet transform with Linear Vector Quantization (LVQ) 
network. After initial preprocessing, image was complemented 
and multiplied with the original image to segment liver. Then 
FCM clustering was applied to divide image into liver, 
background and tumor. In classification, first step was to 
extract horizontal, vertical and diagonal coefficients using 
biorthogonal wavelet transform on tumor region. Second step 
was to build a Co-occurrence matrix that in turn was used for 
calculating second order statistical texture features such as 
ASM, CO, H and ENT in horizontal, vertical and diagonal 
directions using pixel distance of 1. These features were used 
for training LVQ neural network [11]. Experiments revealed 
optimized number of epochs, hidden neuron and learning rate 
parameter to be 100, 20 and 0.01 respectively. 

Ioannis et al. [12] employed non-enhanced CT liver 
images to classify ROI into hemangioma, cyst, HCC, and 
normal types. They extracted distinct features of CT liver 
images using FOP, SGLDM, GLDS, FDTA and TEM. The 
reduced feature set based on GA was then fed to a feed forward 
neural network for classification. To achieve results, authors 
calculated the area under Receiver Operating Characteristics 
(ROC) curve (Az) both for multiclass and one-versus-all 
discriminations. Results showed that FOP features produced 
superior results (mean Az = 0.802). During same time period, 
Bharathi et al. [13] utilized the better feature representation 
capability and least information redundancy of Zernike 
moments and Legendre moments for classification of normal 
and HCC liver using CT images. Total 200 ROI were used out 
of which 140 belong to healthy liver class and 60 to HCC. 
Each ROI was further segmented into multiple 8x8 segments 
out of which 75 were used for training and the remaining for 
testing. The classification efficiency using Zernike features was 
92.37% with 5% noise, 85.50% for 10 % noise and 77.86% for 
15 % noise. The classification result with Zernike and 
Legendre feature vector for normal liver was 98.60 % and 
97.57%, whereas that for HCC was 90.00% and 80.25%. 

Sobia et al. [14] proposed an SVM based solution for 
discriminating hemangioma, hepatoma, cirrhosis and normal 
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liver. Initially, they segmented liver from CT images using 
snakes algorithm and obtained ROI, from which features were 
extracted using SGLDM. Then, feature set was given as input 
to a hierarchical SVM that was designed to discriminate 
between diseased and non-diseased tissue. Diseased image was 
then fed to another SVM that was designed to characterize it as 
hemangioma or non-hemangioma. Non-hemangioma image 
was further used by final SVM to classify it between hepatoma 
and cirrhosis. Overall classification accuracy of the method 
was 77%. 

Authors of [15] proposed an automatic liver segmentation 
method by using pixel based feature extraction, SVM based 
classification and morphological operations. Wavelet transform 
[16] was used for feature extraction instead of Fourier [17] and 
Gabor [18] because it represents texture at multiple scales. 
Pixel based features thus obtained serve as input to SVM 
classifier. SVM based classification does not cater spatial 
information and second, it heavily misclassifies pixels. To 
avoid these problems, well-chosen morphological operations 
were used in sequence: 1) dilation and erosion with square 
structuring element six pixels wide, 2) removing areas other 
than largest, 3) hole filling, 4) removing spurs, and finally 5) 
erosion and dilation. 

Wu et al. proposed a novel approach [19] based on 
statistical moments for texture analysis. They evaluated 
Legendre, Zernike, Krawtchouk and chebichef moments 
[20,21,22] for texture feature extraction in local neighborhood 
of each pixel. After proving discrimination capability of these 
moments for standard Brodatz textures, they were applied on 
CT liver images for tumor recognition. The texture features, 
calculated using aforementioned moments, for multiphase CT 
liver images were classified using SVM. Krawtchouk moments 
were best in terms of classification accuracy. 

B. Ultrasound Texture Analysis Techniques 
Texture analysis of liver ultrasonics has always been a 

source of fascination for researchers. Many well-known liver 
texture analysis techniques, proposed by researchers, are based 
on ultrasound images. Pavlopoulos et al. have investigated the 
usefulness of GLDS and FDTA (based on Fractal Brownian 
Motion theory [23]) for ultrasound liver classification in their 
research work [24]. Liver images were categorized into normal, 
hepatoma and cirrhosis types using 32x32 pixels rectangular 
Region of Interest (ROI), which was manually demarcated by 
expert physicians. Results, collected using the three common 
imaging modalities i.e. CT, MRI and Ultrasound, were quite 
encouraging. Strive for better classification mechanism 
continued and during same time period, Bleck et al. have 
devised a novel texture analysis method [25] based upon an 
Auto Regressive Periodic Random Field Models (APRFM) 
[26]. They compared features obtained using APRFM with 
Conventional Texture Analysis (CTA) techniques, based upon 
previous such comparative studies [27, 28]. In APRFM, main 
optimization problem of deciding neighborhood was solved.  

Wavelet features are also widely used for ultrasound liver 
image classification such as Mojsilovik et al. used 6-level 
quincunx wavelet decomposition for identifying diffused liver 
diseases in their work [29]. Algorithm was designed to estimate 

channel variances at the output of each filter of the filter bank. 
Variance estimate was then used for texture based liver 
classification. This scheme was effective as well as simple. 

Kyriacou et al. used GLDS, RUNL, SGLDM and FDTA 
for classification of diffused liver diseases using ultrasonic 
images in their research work [30]. They computed ENT and 
ASM in GLDS; GLD and RLD in RUNL whereas SENT, CO, 
CORR, VAR and ENT in SGLDM. FDTA was based upon a 
non stationary stochastic process described by fractional 
dimension. Parameters so extracted were used in KNN 
classification. They further investigated the accuracy of these 
techniques with the addition of FOP [31]. Motivation was to 
increase the accuracy which was previously 70% [32, 33]. 
They derived FOP parameters – M and VAR - from the PDF. 
Further, they used SRE and GLD from RUNL category; ASM, 
ENT and CO under GLDS category whereas IDM and SENT 
under SGLDM category. Feature extraction was followed by 3-
step KNN classification.  

Pavlopoulos et al. also characterized diffused liver 
diseases automatically using Fuzzy Neural Network (FNN) 
[34]. 12 texture features for classification were extracted using 
FDTA, SGLDM, GLDS, RUNL, and FOP. These features 
were further reduced to 6 using different feature combinations. 
Then voronoi diagram of training patterns was constructed 
which was used by FNN to generate fuzzy sets and built class 
boundaries in a statistical manner. For validation, authors used 
150 liver images and showed 82.67% classification accuracy. 

  Guohui et al. work [35] is based on feature extraction 
both from M-mode motion curve of liver and B-mode 
ultrasound liver image. They extracted 25 features through 
FOP, RUNL, GLDS, and a few other unique features using M-
mode motion curve. After feature extraction, they applied 
fisher linear decision rule for selecting 20 useful features based 
on minimum classification error. Experimental results revealed 
that features obtained using motion curve were more suitable 
for discriminating normal or cirrhosis liver in terms of 
sensitivity and specificity. Guitao et al. proposed another 
method [36] for ultrasound liver images classification. For 
feature extraction they used FDTA and SGLDM on 64x64 
pixels sub-image. The joint feature vector, thus obtained, was 
used to discriminate 273 healthy and 99 fibrosis liver images. 
Two classification methods - Fisher linear classifier and SVM 
(leave-one-out algorithm) - were used. Both classifiers were 
good in terms of classification rate. However, the joint feature 
vector proved to be a bit better.  

Ahmadian et al. proposed a scheme [37] to identify 
diffused liver diseases using Gabor wavelet and classified 
ultrasonic liver image into normal, cirrhosis and hepatitis 
classes. They exploited three well known benefits of Gabor 
wavelets i.e. maximum joint space frequency resolution, 
smaller feature vector, and invariance to shift of image 
contents. Features were extracted and images were classified 
into different categories using dyadic wavelet transform, Gabor 
wavelet transform and statistical moments and features.  

In [38], ultrasound liver image was decomposed into sub 
images and SGLD matrices were calculated for each sub-
image. This study was much similar to [39]. A total of 100 
matrices were computed for sub images, and seven feature 
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descriptors were calculated from each such matrix. Feature 
descriptor was composed of element difference moment of 
order, inverse element difference moment of order, U, ENT, H, 
and CO. Feature vector was used as input to Self Organizing 
Map (SOM). After NN convergence, neurons were plotted in 
the weight space. No common area between fatty and normal 
liver plots proved good discriminating power.   

Balasubramanian et al. [40] automatically classified 
benign, malignant, cyst and normal liver images using texture 
features computed through SGLDM, RUNL, TEM and Gabor 
wavelets. Eight features were chosen from manually selected 
features and Principle Component Analysis (PCA) based 
optimal features. PCA based features were used by K-means 
clustering algorithm, whereas manually selected features were 
classified by BPN. It seems against intuition but classification 
results of BPN were better than K-means. Same liver diseases 
were classified by Poonguzhali et al. [41] study. They used 
TEM, Autocorrelation, Edge Frequency method and SGLDM 
for feature extraction from ROI of ultrasound images. PCA was 
used to select optimal feature set from extracted features. 
Optimal features were then used for K-means classification.  

Authors of [42] have proposed a classification system for 
identifying normal and fatty liver ultrasound images using 
Discrete Wavelet Transform (DWT). Daubechies mother 
wavelet was chosen and three level decomposition of DWT 
was used. M and SD of approximation and detail sub-parts of 
three level decomposed images were used as feature 
parameters. To remove the redundant features out of a total of 
24, the vertical and diagonal detail coefficients of 3-level 
DWT, the horizontal detail coefficient and approximation 
coefficient of 2-level DWT were used. PNN was used for 
classification. Input and output layers were in accordance with 
input features and the rule of competitive learning respectively.  

Huang et al. used SGLDM, Gray level histogram and 
GLDS for textural analysis of liver in their experimental work 
[43]. Initially, image was de-noised and features were 
computed from ROI. Feature set included ASM and ENT for 
all, M for Gray level histogram and GLDS, CO for GLDS and 
SLDM, Homogeneity for SGLDM, and VAR for Gray level 
histogram only. Finally features were classified using PNN. 
SGLDM was also used by Kundu et al. [44] to perform texture 
analysis on 76 normal and 12 fatty liver ultrasound images. 
Images were denoised using Gaussian smoothing filter before 
feature extraction using SGLDM. These features were used as 
input to SOM [45] for examining the clusters formation of 
input data. Authors showed the result of clustering with and 
without Gaussian smoothing however classification results 
were better for Gaussian filtered image.  

C. MR and Other Texture Analysis Techniques 
MR and some other imaging modalities are less commonly 

used for liver texture analysis because it is quite difficult to 
extract useful texture information from the images corrupted by 
undesirable artifacts of these modalities. 

Xuejun et al. [46] followed almost similar approach to that 
of [34], but crisp NN was employed instead of FNN. In their 
work, shape features were extracted from liver MR images by 
drawing two approximate straight lines from liver contour in 

the premises of ROI. The angle formed by these lines and the 
distance of their intersection from apex point were used as two 
shape features. Similarly, textural features like CO, ENT, 
ASM, M, IDM, SD and M were calculated using GLDS. Shape 
and texture features were concatenated and fed to a NN for 
classification. Output, greater than 0.5, indicated cirrhosis. 

Shih et al. work [47] is based on biopsy liver images 
classification as HCC or normal liver using an improved 
Simpler PNN. They converted stained biopsy images to 8 bit 
gray level images using Ohta’s transformation. Five versions of 
transformed gray level image were used. FDTA was used to 
compute a pair of FD estimators for each of five versions and 
Hotelling’s T2 test was applied to select best FD features pair 
that was fed to the improved PNN. They showed that SPNN 
was better than the traditional Specht’s PNN [48] in terms of 
simple architecture and faster recall for most network sizes.  

Mohamed et al. proposed a bloc-wise clustering based 
technique [49] for extracting features of D, U, ENT, and CO, 
using SGLDM from mammograms in order to classify normal, 
benign and malignant tissues. Initially, image was enhanced 
using cropping and histogram equalization. Then features were 
extracted from fixed blocs of the image using SGLDM. Feature 
extraction methods were based either on pixel wise 
segmentation approach or ROI selection approach. PCA was 
then used for dimensionality reduction prior to using Fisher 
Linear Discriminant Analysis. Then, classification was 
performed with multiple classifiers however RBF was best.   

IV. DISCUSSION 
Different authors have used different performance metrics 

to check classification accuracy. Some have used classification 
error/accuracy as a measure of performance while others have 
exploited area under ROC curve. Even some authors have 
validated their proposed schemes just by manual inspection 
performed by expert radiologists. A summary of classification 
results using different textural measures can be of substantial 
value for setting future directions. Such a result summary is 
presented in compact form in Figure 2. Horizontal axis shows 
textural analysis techniques used in different classification 
schemes whereas vertical axis represents classification 
accuracy of these techniques for different diseases. Another 
useful performance metric is specificity and sensitivity which 
is summarized in Table I. Table II depicts the textural features 
type, data type and number of data samples. 

V. CONCLUSION 
It has been observed that techniques based on CT texture 

analysis, though evaluated for a few liver diseases, have much 
better discriminating power than others. Contrary, methods 
employing ultrasound images have been used for diagnosing a 
large number of diseases but are less accurate. In case of CT 
scan, techniques based on statistical moments perform better 
such as [13], based on Legendre moments, is best in 
determining normal liver. For Ultrasound, wavelet-based 
techniques for feature extraction such as [29] outclass others.  

This work is a modest beginning to summarize texture 
analysis methods for liver categorization that may further be 
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evolved to compare major texture measure techniques under 
identical environment each for MRI, CT and Ultrasound 
images. These schemes have exploited the variation in texture 
patterns of diseased and healthy liver. Even in the former case, 
liver texture varies from disease to disease thus serves as a 
distinguishing tool in subjective evaluation of various types of 
liver diseases based on echo texture and echogenicity. No 
texture measure method is perfect for each of three imaging 
modalities. Instead, their combination produces better results in 
certain applications. 

VI. FUTURE WORK 
Though our preliminary investigation is much promising, 

there is a lot more to be done. This research can further be 
extended into two directions. First, testing all texture measure 
methods using same data set and similar performance measures 
may provide a clearer view. Second, adding more texture 
measure methods can potentially provide better comparative 
study.  

 

N = Normal, F = Fatty, C = Cirrhosis, H = Hepatoma, T = Total

Figure 2.  Liver texture analysis results for individual disease types 

TABLE I.  LIVER TEXTURE ANALYSIS RESULTS (SENSITIVITY AND SPECIFICITY) 

NPV = Negative Predicting Value, PPV = Positive Predicting Value, T = Total 

TABLE II.  DATA SAMPLES AND FEATURE EXTARCTION TECHNIQUES FOR TEXTURE ANALYSIS 

 
Data Features 

Number of Samples 
Data Features 

Number of Samples

N F C H Other T N F C H T 

[29] US Wavelet 37 - 20 - S(65) 122 [2] US GLDS, FDTA 20 - 20 20 60 

[13] CT Zernike, 
Legendre 140 - - - HC(60) 200 [5] US GLDS,FDTA,RU

NL,SGLDM 30 30 30 30 120 

[43] US 
GLDS, 
SGLDM, 
Histogram 

50 50 - - - 100 [6] US GLDS,SGLDM,F
DTA,RUNL,FOP 30 30 30 - 90 

[14] CT SGLDM 16  25 25 M(25) 91 [7] US FDTA+SGLDM 50 50 50 - 150 
[42] US Wavelet - - - - - 100 [9] MR GLDS + Shape 7 - 11 - 18 
[19] CT FOP 38 - - 24 HC(20), Y(15) 97         

N = Normal, F = Fatty, C = Cirrhosis, H = Hepatoma, S = Steatosis, HC = , Hepatocellular Carcinoma, M = Hemangioma, T = Total
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