IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11,

NO.6, NOVEMBER/DECEMBER 2014 1131

GECC: Gene Expression Based Ensemble
Classification of Colon Samples

Saima Rathore, Mutawarra Hussain, and Asifullah Khan

Abstract—Gene expression deviates from its normal composition in case a patient has cancer. This variation can be used as

an effective tool to find cancer. In this study, we propose a novel gene expressions based colon classification scheme (GECC) that
exploits the variations in gene expressions for classifying colon gene samples into normal and malignant classes. Novelty of GECC is in
two complementary ways. First, to cater overwhelmingly larger size of gene based data sets, various feature extraction strategies, like,
chi-square, F-Score, principal component analysis (PCA) and minimum redundancy and maximum relevancy (mRMR) have been
employed, which select discriminative genes amongst a set of genes. Second, a majority voting based ensemble of support vector
machine (SVM) has been proposed to classify the given gene based samples. Previously, individual SVM models have been used for
colon classification, however, their performance is limited. In this research study, we propose an SVM-ensemble based new approach
for gene based classification of colon, wherein the individual SVM models are constructed through the learning of different

SVM kernels, like, linear, polynomial, radial basis function (RBF), and sigmoid. The predicted results of individual models are combined
through majority voting. In this way, the combined decision space becomes more discriminative. The proposed technique has been
tested on four colon, and several other binary-class gene expression data sets, and improved performance has been achieved
compared to previously reported gene based colon cancer detection techniques. The computational time required for the training and
testing of 208 x 5,851 data set has been 591.01 and 0.019 s, respectively.

Index Terms—Colon cancer, ensemble classification, gene expressions, PCA, mRMR, F-Score, chi-square

1 INTRODUCTION

COLON is a major constituent of large intestine and its
cancer is quite common worldwide. Colon cancer
arises due to abnormal growth of tissues in colon, which
may turn into polyps. Polyps are usually benign, but some
of them may catch malignancy if not treated in time. Colon
cancer is primarily due to low intake of herby diet, and
more intake of meat and fatty stuff. Some other factors of
colon cancer include older age, chain smoking, and family
history of colon cancer [1].

Microscopic inspection of colon biopsy samples is the
classical method of cancer detection, however, it is time-
consuming and laborious for the histopathologists, and
have inter-observer/intra-observer variations in grading
[2]. Therefore, automatic colon cancer detection techniques
are in high demand. Researchers have been working since
decades to propose reliable automatic methods of colon
cancer detection. These methods have been summarized in
a recent survey reported by Rathore et al. [3]. Some of these
methods [4], [5] work on selected bands of hyperspectral
colon data, extract a few discriminative features, and
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classify the sample into normal and malignant classes.
There is another exciting method of colon cancer detection
that is based on exploitation of heavy differences between
composition of normal and malignant blood serum by using
laser-induced fluorescence and Raman spectroscopy [6], [7].
The texture of normal and malignant colon samples
(images) has also notable contrast, and researchers have uti-
lized it to detect colon cancer. Morphological features [8],
statistical features [9], and image fractal dimensions [10]
based colon cancer detection schemes are the major repre-
sentatives of this category. Furthermore, visual analysis of
colon biopsy images is another method for colon cancer
diagnosis [11].

Another promising method of colon cancer detection,
which is also the focus of this research study, is the analy-
sis of genes by using Oligonucleotide and cDNA microar-
rays (detailed working of microarrays will be explained in
Section 2.1). Gene based data sets have been used in vari-
ous research studies for diagnosis of cancer [12]. Similarly,
physicians have also analyzed the human gene expressions
for diagnosis of colon cancer by using microarrays, and
identified many discerning genes responsible for detection
of colon cancer [13], [14], [15]. But, these studies worked
purely on finding discriminating genes amongst a pool of
genes without an aim to actually identify the type (normal
or malignant) of samples.

The discerning genes have been used to classify the sam-
ples into normal and malignant classes. In 1999, Backert
et al. utilized 588 gene expressions, obtained from three
classes (normal, non-mucinous and mucinous) of colon tis-
sues [16]. But, their scheme yielded classification accuracy
of slightly above 50 percent. Li et al. used genetic algorithm
(GA) to identify discriminative genes, and achieved
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classification accuracy of 94.1 percent by using k-nearest
neighbor (KNN) classifier [17]. Chen and Li [18] used multi-
ple kernel support vector machine (MK-SVM), where multi-
ple kernels are described as the convex combination of the
single kernels. Algorithm was tested on leukemia and colon
tumor data sets, and more than 90 percent classification suc-
cess was achieved for both the data sets. Research continued
in this domain, and Shon et al. proposed using wavelet
transformation for reduction of feature space [19]. They
classified colon cancer data with probabilistic neural net-
work (PNN), and obtained 92 percent accuracy.

Further, Venkatesh et al. proposed an EFJ-neural net-
work for classification of KentRidge colon cancer data set
[20]. The data distribution was 70 and 30 percent amongst
training and testing data, respectively. Similarly, Kulkarni
et al. proposed an evolutionary algorithms based method
for detection of colon cancer [21]. In this work, t-statistic
and mutual information were employed as feature selection
strategies, and genetic programming and decision trees
were used as classifiers. The results revealed that the combi-
nation of mutual information and genetic programming is
promising compared to others.

Recently, Lee et al. proposed a finite impulse response
extreme learning machine (FIR-ELM) based colon cancer
detection technique [22], and achieved quite promising clas-
sification of colon samples. Further, Tong et al. proposed a
method of colon cancer detection in which 50 gene pairs
were selected using top scoring pair method, and linear
SVM classifiers were trained on those pairs [23]. GA was
employed to select such an optimal combination of SVM
base classifiers that yields maximum possible performance.
Tong et al. reported a classification accuracy of 90.30 percent
with colon data set.

Microarrays though facilitate to analyze huge volume of
data enabling insight into tissues and find the state of the
cancer, however, microarrays based gene analysis poses
two challenges. First, the major challenge in analysis of
human genes is large dimensionality of the feature set
under consideration. Therefore, efficient techniques are
required to identify meaningful genes amongst a large pool
of available genes. Second, many of the classifiers used pre-
viously to classify colon cancer data set did not perform rea-
sonably well. Therefore, an efficient and robust classifier is
needed that can divide the gene based samples into respec-
tive classes by considering selected genes. In this paper, we
tackle both the issues quite reasonably. Different feature
selection strategies such as minimum redundancy maxi-
mum relevancy (mRMR), principal component analysis
(PCA), F-Score, and chi-square have been employed to
select a discerning feature set quite capable to distinguish
the two classes. Moreover, an SVM-ensemble based new
approach for classification of colon gene expressions has
been proposed, which is named GECC. In the proposed
scheme, the individual SVM models are constructed
through the learning of different SVM kernel functions such
as linear, polynomial, RBF, and sigmoid. The predicted
results of individual SVM models are then combined using
majority voting. In this way, the combined decision of vari-
ous models turns out to be better compared to individual
decisions. SVM has been used for classification of genes
expressions in the past [23], [24]. However, we have
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TABLE 1
Abbreviations Used in the Text

Acronym Abbreviations
AUC Area under the curve
CNS Central nervous system
DLBCL Diffuse large b-cell lymphoma
DNA Deoxyribonucleic acid
KNN K-nearest neighbor
mRMR Minimum redundancy and maximum relevance
PCA Principal component analysis
PNN Probabilistic neural network
RBF Radial basis function
RNA Ribonucleic acid
ROC Receiver operating characteristics
SVM Support vector machines

experimentally validated that making ensemble of SVM
decision models for colon cancer detection is an interesting
idea due to the chance of making a more discernible deci-
sion space.

The remainder of this paper is organized as follows.
Section 2 describes the detail of microarray experiment and
a few notations/abbreviations used in the text. Section 3
presents the proposed GECC scheme in detail. Section 4
highlights the performance evaluation measures. Section 5
demonstrates experimental results, and Section 6 concludes
the paper.

2 PRELIMINARIES

This section provides a healthy supporting material to
understand the working of microarrays. Additionally, it
also presents different abbreviations, which are used in the
document. Table 1 summarizes these abbreviations.

2.1 Microarrays

A microarray is a collection of multiple spots on a glass slide
and each spot may contain a few million copies of identical
DNA molecules that uniquely correspond to a gene. Most
common method of measuring gene expressions from
microarrays is to compare genes expressions of one cell
inhibited under certain condition (sample 1) to those of the
reference cell maintained in normal condition (sample 2).
RNA molecules of both the samples are reverse transcribed
into cDNA by using an enzyme reverse transcriptase and
nucleotides, labeled with different fluorescent dyes. Once
both the samples become uniquely identifiable by using
labels, they are hybridized on to the same glass slide, and
the locations in the hybridized microarray are excited by a
laser. The amount of fluorescence emitted upon excitation
corresponds to the amount of bound nucleic acid. The final
output of the microarray experiment is an image in which
each location that corresponds to a gene has an associated
fluorescence value representing the relative expression level
of that gene. Fig. 1 presents a sample tiff image obtained
after a microarray experiment. Each row represents one
unique sample, wherein each column represents gene
expressions corresponding to the sample. The gene expres-
sions are measured from the image, and are stored in data-
base against respective samples.
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Fig. 1. Tiff image generated by a microarray experiment showing genes
expressions for various samples.

3 PRoOPOSED GECC SCHEME

The proposed GECC scheme is an effective combination of
feature selection strategy coupled with ensemble classifica-
tion. It comprises four distinct phases; (1) gene expression
based feature vector formulation, (2) feature selection using
various feature selection strategies, (3) training/testing data
formulation, and finally, (4) ensemble classification of genes
based samples into normal and malignant categories. Fig. 2
represents top-level architecture of the GECC, and the fol-
lowing text explains its different phases in detail.

In the proposed GECC scheme, four standard data sets
(explained in Section 3.1) have been used. The sequence
of operations is identical for all the data sets except for
the gene selection phase, which is not executed for
BioGPS data set owing to its smaller dimensionality.
Once discriminative genes are selected, data processing
phase assigns target labels to the samples. Multiple SVM
kernels are employed to predict the class of a given sam-
ple, and then the predictions of individual SVM models
are combined through majority voting. In this work, it
has been shown through experimentation that a carefully
selected combination of feature selection strategy and
ensemble classification for identification of gene based
samples prove to be an effective solution.

Next few sections explain different phases of the pro-
posed scheme in detail. Several symbols have been used in
subsequent sections, therefore, in order to make the docu-
ment readable and understandable, commonly used sym-
bols are listed in Table 2.

3.1 Data Set

Gene expression based classification has been conducted on
four standard colon cancer data sets, namely, KentRidge
[25], BioGPS [26], Notterman [27], and E-GEOD-40966 [28].
These data sets have been acquired from publically accessi-
ble gene expression databases. These are raw data sets,
therefore, two subsequent steps, namely, gene expression
based feature vector formulation (Section 3.2), and discern-
ing genes selection (Section 3.3) are applied on these data
sets to make them suitable for classification. The following
text provides a brief description of these data sets.

3.1.1 KentRidge Data Set

This data set [25] comprises 40 malignant and 22 normal
samples. Its dimensionality is 2,000. KentRidge is a pre-
processed data set in which 2,000 (out of 6,500) gene expres-
sions have already been selected in a clinical study [13].
However, to further reduce the computational burden and
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Fig. 2. Top level layout of the proposed GECC technique.

TABLE 2
Symbols Used in the Text

Symbol Description

X Data set comprising S samples

t Target label vector ¢ = [t;, 1, . .., ts]" comprising S
labels corresponding to S samples in X;
t,e{-1,41},s=1,2,...,S

XN Data set comprising normal samples of X

XM Data set comprising malignant samples of X

S Number of samples in X

Sh Number of samples in X~

M Number of samples in X"

sP Number of support vectors

XN (4) jth feature value of the nth sample in the data set
XN

XM(5) jth feature value of the m'th sample in the data set
XM

w5 (5) Mean of jth feature of all the samples in X where
j=1,2,...,]

uN () Mean of jth feature of normal samples in X" where
j=1,2,...,]

wM(5) Mean of jth feature of malignant samples in X
where j=1,2,...,J

T Number of partitions for a given feature

P5(4) Number of samples in partition ¢ for jth feature in
Xwheret =1,2,...,T

PN(j) Number of normal samples in partition ¢ for jth
feature in X wheret =1,2,..., T

PM(5) Number of malignant samples in partition ¢ for jth
feature in X wheret = 1,2,...,T

F Number of folds for SVM decision models

N Number of neighbors for KNN decision model
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to select most meaningful genes, feature selection process is
once again applied on the data set.

3.1.2 BioGPS Data Set

BioGPS data set [26] comprises 131 samples out of which
37 are normal and 94 are malignant. This data set has only
three discriminative gene expressions. Therefore, no gene
selection process is applied on it due to its relatively smaller
size compared to other data sets.

3.1.3 Notterman Data Set

Notterman colon cancer data set [27] has been taken from
gene expression project of Princeton University, New Jer-
sey, USA. This data set comprises 36 samples out of which
18 samples are normal, and remaining 18 samples are
malignant. Each sample has 7,457 genes.

3.1.4 E-GEOD-40966 Data Set

E-GEOD-40966 data set [28] doesn’t comprise ordinary
malignant and normal samples just like other data sets.
Rather, this data set has 463 malignant colon samples of dif-
ferent cancer stages. E-GEOD-40966 data set has been
acquired from ArrayExpress repository of gene expressions.
We have picked 208 stage 2 and 142 stage 3 patients from
the data set in order to develop a binary-class data set.
Dimensionality of E-GEOD-40966 data set is also very large;
each sample within the data set has 5,851 gene expressions.

3.2 Genes Expressions Based Feature Vector
Formulation

The main objective of this stage is to formulate a feature vec-
tor for every colon sample. A feature vector is desired to be
as small as possible but at the same time should contain the
features, which are discriminative enough to classify given
samples into their respective classes with good accuracy. In
this particular research study, we are dealing with gene
expressions, therefore, feature vector has been developed
by aligning values of gene expressions for each sample in
sequence. One gene expression means one feature in the fea-
ture vector, therefore, features, genes, and gene expressions
will be used interchangeably in the text. Likewise, gene
expression profile comprising multiple gene expressions
means one feature vector.

3.3 Gene Expression Profile Reduction Methods
Gene expressions found through clinical research studies
are usually larger in number. These larger and imbalance
gene expressions generally create problems for the decision
models in accurately predicting the samples if they are used
for the classification without any pre-processing. Therefore,
prior to classification, dimensionality of gene expression
profile must be reduced in order to provide only the mean-
ingful gene expressions to the decision models. Several
advanced gene selection techniques have been proposed in
the contemporary literature [29], [30], but they are not fully
established. Therefore, we have employed the following
four state-of-the-art feature selection strategies.

3.3.1 mRMR

mRMR selects gene expressions (features) while trying to
maximize the inter class (genes of two classes) and
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minimize the intra class (genes of one class) proximities. It
accomplishes this by selecting genes, which show maxi-
mum relevancy to target labels and have minimum redun-
dancy amongst them [31]. Usually, mutual information
amongst the genes as well as amongst the genes and the tar-
get labels can be utilized to calculate relevancy and redun-
dancy scores of genes.

For a given data set X comprising S training samples of |
gene expressions each, the redundancy of the data set R(X)
is the average value of all mutual information values
between all the gene pairs.

1<
X) = ? Z [(givgj);
ij=1

where g;,9; € X. 1)

Where g; and g, represent the ith and jth gene expression
vectors in X, and [(g;, g;) represents the mutual information
between the genes g; and g;, which can be calculated using
the following expression.

iz 9in
gug] Zp(gz I‘7gj Y 10g<¥>7

P\YGix )p(glﬁy) (2)

where x,y=1,2,3,...,S.

Where g;, and g;, are xth and yth elements of gene
expression vector g; and g;, respectively. p(gi.,g;,) shows
the joint probability density function of g;,, and g;, The
terms p(g; ) and p(g;,) represent marginal probability den-
sity functions of g; , and g;,, respectively.

Similarly, for the target label vector t comprising labels of
S samples, the relevance of the data set X with ¢, denoted by
VX, t, is defined by the average value of all mutual informa-
tion values between individual gene expressions g; and the
label vector t as follows.

| =

J
=3 Z (g;,1); where g; € X. 3)
i=1

1(g;,t) denotes the mutual information between the gene
expression g; and label vector t. It can be calculated using
the following equation:

p(gi mtx) >
b b 10 —— ;
lg..t Z””” g( (:0)p(t2)

where r=1,2,3,...,S.

4)

Here p(g; ., 1,) is joint probability density function of g; ,
and label t,. The terms p(g;,) and p(t,) show the marginal
probability density function of g; ., and the marginal proba-
bility mass function of ¢,, respectively.

The objective is to select the set of gene expressions
which yields maximum relevance V and minimum redun-
dancy R. As both the objectives are usually not achievable
simultaneously, therefore, Equation (5) establishes a trade-
off between the two objectives by combining Equations (1)
and (3) as follows:

- R(X)]

J
= max 721 g;;t) N Zf(g“g,)
ij=1

mRMR = m)?x[V(X, t)
(%)
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Let m; be the set membership indicator function for gene
expression vector g;, so that m; = 1 indicates presence and
m; = 0 indicates absence of the gene expression g; in the
globally optimal gene set, then Equation (5) may be written
as an optimization problem as follows:

Z}],j:1 I(g;, gj)mimj

(Z;J]:I mi)2

Sl I(gi tym:
25:1 m;

mRMR = max

me{(),l}‘]
(6)

Thus, the set of gene expressions determined using
mRMR is expected to contain values which not only bear
maximum possible relevancy to the target labels, but are
non-redundant as well [31].

3.3.2 F-Score

F-Score [32] is the simplest of all feature selection strategies.
It tries to simultaneously minimize the intra-class distance
and maximize the inter-class distance. Given S data sam-
ples, if the number of normal and malignant samples are S~
and SM, respectively, then F-Score of the jth feature is given
in the following equation:

FScore;

(NG = 15G)* + (M) — 1)

I (XN() — () gy Sy (XY () — M ()
‘ (7)
wherej = 1,2,...,J. The terms uN(j),u™(5) and 15 (j) are the

average of the jth feature of the normal, malignant and total

samples, respectively. The terms X (j) and X (j) corre-
spond to individual values of the jth features for nth and
mth samples of normal and malignant classes, respectively.
The larger the F-Score, the more discriminative the feature is.

3.3.3 Principal Component Analysis

Principal component analysis, initially proposed by Pear-
son, is a mathematical (orthogonal) transformation that
transforms a data set comprising correlated variables into a
set of linearly uncorrelated variables [33]. These linearly
uncorrelated variables are called principal components.
Such an orthogonal transformation makes sure that first
principal component bears maximum variability in data,
and each succeeding component also bears maximum possi-
ble variability while maintaining orthogonality with preced-
ing principal components.

3.3.4 Chi-Square

Chi-square is another promising method of feature selection
that evaluates different features on the basis of their chi-
square statistic with respect to the classes in the data set.
For the given data set X, the chi-square score of the jth fea-
ture (gene) is given by Equation (8).

Chi — Square,

PO —ENG) | &S @YG) -ENYG)E ®
B R D R
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Fig. 3. Formulation of training and testing data through Jackknife cross-
validation.

Where P} (j)and P}'(j)as defined in Table 2, respectively,
are the number of samples of normal and malignant classes
lying in partition t. Likewise, E} (j) and E}'(5), respectively,
are the expected frequencies of P} (j) and P} (j), and are cal-
culated using Equation (9). Chi-square, when operates on
numeric attributes, requires the range of the attribute to be
discretized into multiple partitions. Partitions of a single
gene expression j are represented by t where t =1,2,...,T
in equation (8).

N LS s w5 b
E;(J) =5 x P{0). B (9) = g x 7 (5). ©)

Once chi-square scores for the entire gene expressions
are calculated, gene expressions are sorted in the descend-
ing order of their chi-square values. Desired number of top
most gene expressions are selected as larger the chi-square
score, better discerning the gene is.

3.4 Training/Testing Data Formulation

Once discerning gene expressions are selected, next comes
the issue of data formulation. In this work, Jackknife cross-
validation technique has been employed for classification. It
is a commonly practiced technique that has been success-
fully used in the past to validate the accuracy of prediction
[34]. In Jackknife test, data are divided into F folds. F-1 folds
participate in training, and the classes of the samples
belonging to the remaining fold are predicted based on the
training performed on F—1 folds. This sampling process is
repeated F times and the class of each sample is predicted.
In this work, 10-fold cross-validation scheme has been
employed for classification. Fig. 3 presents Jackknife cross-
validation process, whereby data have been divided into
10 folds. Each fold hosts S/10 samples except the last one
that may house less than S/10 samples.

3.5 Decision Modeling

SVM was originally proposed by Vapnik [35], and has
been successfully used in medical diagnosis [36], [37]. In
this work, linear, RBF, sigmoid and polynomial kernels
of SVM have been employed. SVM kernels have been
chosen after an exhaustive experimental process. We
have evaluated several other classifiers such as decision
trees, KNN, and PNN in addition to SVM, and observed
that SVM kernels yield superior results compared to
others. Therefore, for optimized performance, we have
selected four variants of SVM. The following text briefly
describes the working of SVM.
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Consider a training data set Q € X comprising Z training
sample gqi,q2,...,qz, and target labels t = [t1,1,..., tZ]T
where t; € {—1,+1},2=1,2,...,7Z. The data to be classified
may be linearly or non-linearly separable. For linearly sepa-
rable data, the aim of classification is to design a linear deci-
sion surface (given in Equation (10)), which correctly
classifies the training samples.

flg) =w" - q+bias=0. (10)

However, such a decision surface, defined by its direc-
tion/weight vector w and position (bias) in the space, may
not be unique. Therefore, the objective is to select a direction
w such that the distance of the surface to the nearest points
of the two classes is maximum. The nearest points are called
support vectors, and the distance of the nearest points from
the surface is called margin. For binary classification of sam-
ples into normal and malignant classes, candidate decision
surfaces are normalized in such a way that value of f(q) for
the support vectors is equal to +1 for malignant class, and
—1 for normal class. The problem can be solved using opti-
mization techniques for non-linear objective function sub-
jected to linear inequalities [38].

L. 2
minimize ||w||

subject to ty ('quZ + bias) >1;, 2=1,2,...,7,

where w is a linear combination of the support vectors.

For linearly non-separable data, there are three cases.
First, training points may fall on correct side of the decision
surface and behind margin. Second, training points may fall
on correct side of the surface, but inside margin. Third,
training points may fall on wrong side of the surface. The
objective is to select a decision surface such that second and
third cases could be minimized. A penalty term is added for
this purpose. Let £ = [¢1,&, ..., &.] be a vector comprising
error terms corresponding to Z training samples in the data
set. Therefore, the problem for linearly non-separable data
may be formulated as:

z
minimize||wl||® 4 ¢ Z &
z=1

subject to t.(w'q, + bias) >1—€; z=1,2,...,%,

where £, =0, 0 <, <1, and £, > 1 for points correspond-
ing to first, second and third cases, respectively. The term ¢
is the penalty parameter associated with the penalty term
S €.

When data are not linearly separable, SVM, a non-linear
classifier, may be used that maps the data from lower
dimension J to a higher dimension J* through a non-linear
mapping ®(q) so that ®: R’ — R, J* > J. Suppose, q
and r are the training samples, a non-linear decision surface
f(q) between the classes can be constructed in terms of ker-
nel functions [38]:

sP sP
flq) = ZaztzK(q, r) + bias = Zaztﬂ)(q) - ®(r) + bias,
z=1 z=1

an
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where SP is the number of support vectors. «, and t., respec-
tively, are the Lagrange multipliers and target labels associ-
ated with the support vectors.

The kernel functions of SVM are either local or global.
For local kernels, only the data samples that are in prox-
imity of each other influence the kernel values. Whereas,
in case of global kernels, samples far away from each
other still have an influence on the kernel values. To
introduce diversity in the ensemble classifier, we have
used local (RBF) as well as global kernels (linear, polyno-
mial and sigmoid). Linear, RBF, sigmoid and polynomial
kernels can be mathematically defined by Equations (12),
(13), (14) and (15), respectively.

K(gr)=4q" -1, (12)
K(g,r) = exp(—yllg —r||*), (13)
K(q,r) = tanh(yq" - r+7), (14)

K(gr)=lyq" -r+1]". (15)

All these SVM kernel functions share one common cost
parameter ¢, which is the constraint violation cost associated
with the data point occurring on wrong side of the bound-
ary. The parameter y in the RBF, sigmoid and polynomial
kernel functions controls the shape of the separating hyper
plane. Increasing y usually increases number of support
vectors. The parameter g is the degree of polynomial kernel,
and r is the offset of polynomial and sigmoid kernels. Selec-
tion of optimal values of SVM parameters will be discussed
in Section 5.2.1.

In order to validate the effectiveness of the selected deci-
sion models for the task at hand, performance of GECC has
also been compared with a few state-of-the-art decision
models, like, PNN, KNN and decision tree. Detailed infor-
mation on these decision models can be found in Duda’s
classical book [39].

3.6 Majority Voting Based Ensemble Classification
Recently, ensemble classification has become popular in
medical diagnosis due to its pre-eminence over single classi-
fier based systems [40]. The major advantage of ensemble
classification is that it utilizes diversity of individual mod-
els. The proposed ensemble scheme has been developed by
using the concept of stacking the predicted labels of individ-
ual SVM models. This way, a new decision space has been
constructed that is expected to be more discerning com-
pared to the original one.

In this research study, the individual SVM models are
trained on data set X and their predictions are noted down.
Suppose the predicted labels of linear, RBF, sigmoid and
polynomial decision models for the input data set X are 1",
1% 19 and 1Y column vectors of size S. Since, there are two
class types (-1 for normal and +1 for malignant), therefore,
each individual element of the predicted label vectors has
either value —1 or +1. Majority voting algorithm is then
used to combine the predictions of individual SVM models.
In this step, —1 and +1 labels assigned by the individual
decision models for each sample are counted, and then
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based on the majority of votes, —1 or +1 label is assigned to
the sample. However, an equal value of votes for —1 and +1
means that a tie exists amongst decision models. These sam-
ples are termed as hard samples, and the concept of
weighted majority voting [41] has been introduced in GECC
in order to tackle these samples.

In weighted majority voting, weights have been deter-
mined for different SVM decision models based on their
individual performances. Genetic algorithm has been
designed to run for 200 iterations, and to find such an
optimal combination of weights for different decision
models that gives optimal ensemble classification results.
The weights are selected such that the summation of all
the weights remains equal to one. The optimal weights
found by GA for linear, RBF, sigmoid and polynomial
kernels are 0.210, 0.240, 0.295, and 0.255, respectively.
The classes of the samples have been found by adding
weights of the decision models separately for normal and
malignant labels. Two conclusions can be drawn from
the optimized weights of SVM kernels. First, weight of
any single SVM kernel never exceeds the sum of weights
of the other three kernels. Second, weight of sigmoid ker-
nel in combination with any other kernel exceeds the
sum of weights of rest of the two kernels. Therefore, vot-
ing preference has been given to the sigmoid SVM in
case of these hard samples. Let p (a column vector of size
S) represents the result of ensemble classification, and
y~! and y*! vectors contain the number of normal and
malignant votes for all the samples, respectively. The pre-
dicted label p, is assigned to the sth sample depending
upon the values of y/!' and y;!, and in case of tie, the
label predicted by sigmoid SVM for sth sample i.e. ¢ is
used. The whole process is summarized as follows:

+1, if y;rl > y;l
-1, if y;t >y
19, if y;t=y!

Ps = 821,2,...,8.

4 PERFORMANCE EVALUATION MEASURES

Results have been evaluated using well-known perfor-
mance measures such as accuracy, sensitivity, specificity,
Matthews’s correlation coefficient (MCC), and F-Mea-
sure. The calculation of these measures involves number
of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). TN and TP are the num-
ber of correctly classified negative and positive samples.
FN and FP are the number of incorrectly classified posi-
tive and negative samples.

Accuracy is a measure of overall effectiveness of the clas-
sification scheme. It can be calculated as follows:

TP +TN o
TP+ FP+TN + FN

100. (16)

Accuracy =

Sensitivity is the ability of a classifier to recognize pat-
terns of positive class. It can be calculated as follows:

TP

TP+ FN- (7

Sensitivity =
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Specificity is the ability of a classifier to recognize pat-
terns of negative class. It can be calculated as follows:

TN
Speci ficity = TN + FP°

(18)

MCC serves as a measure of classification in binary class
problems. Its value ranges from —1 to +1. +1 means classi-
fier always predicts a right label, whereas —1 means classi-
fier always commits a mistake. However, 0 means random
prediction. MCC can be calculated as follows:

TP x TN — FP x FN
/(TP + FN)(TP + FP)(IN + FN)(IN + FP))

(19

MCC =

F-Measure makes use of precision and recall to estimate
accuracy of classification.

TP
TP + FP’

P

Recall = m .

Precision =

F-measure can be calculated by using Equation (20). It is
a weighted average of precision and recall values. Its value
ranges between 0 and 1, where 0 is the worst possible score
and 1 is the best possible.

Precision x Recall

. 20
Precision + Recall (20

F — Measure = 2 x

Accuracy, sensitivity, specificity, and F-Measure will be
abbreviated as acc, sens, spec, and FM at some places in
Section 5. Similarly, sigmoid and polynomial SVM will be
shortened as sigm and poly in Section 5.

5 EXPERIMENTAL RESULTS

The proposed GECC technique has been tested on various
standard colon cancer data sets. The gene expressions,
selected by various feature selection strategies, are given to
the algorithm as an input for ensemble classification
through majority voting scheme. All the computations have
been performed on Intel Core i7 with 3.4 GHz processor
and 12 GB RAM.

5.1 Selection of Discriminative Gene Expressions
from Data Sets Having High Dimensionality
KentRidge, Notterman and E-GEOD-40966 data sets have
high dimensionality. Therefore, experimentation starts with
the selection of meaningful gene expressions from these
data sets. In this connection, four different feature selection
strategies have been adopted. Overall purpose of each fea-
ture selection strategy is to select discriminative gene
expressions, but the underlying method of selection is
entirely different. This is why gene expressions nominated
by different feature selection strategies vary in number and
are different as well. Weka, a machine learning tool, has
been used to find F-score and chi-square based features for
the data sets. For each data set, Weka returns an optimal set
of gene expressions, which in turn leads to maximum classi-
fication accuracy for the data set. The process of features
selection through PCA and mRMR is slightly different.
Therefore, the process has been explained in the following
text for KentRidge data set as an example.
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Fig. 4. Plot of (a) eigenvalues, (b) number of eigenvalues required for a
particular confidence interval, (c) confidence interval versus classifica-
tion accuracy of GECC on KentRidge data set.

For features selection through PCA, eigenvalues of the
data set are analyzed, and principal components regarding
most discerning eigenvalues are selected. Fig. 4a presents a
plot of first 50 eigenvalues for KentRidge data set. It is
observed from the figure that only first few eigenvalues
have discerning power, therefore, we can cut off the remain-
ing eigenvalues to reduce computational burden. In order to
select the number of eigenvalues to be used, eigenvalues
and corresponding classification accuracy of GECC have
been measured as a function of confidence interval. Confi-
dence interval is actually the area under the curve of eigen-
values as shown in Fig. 4a, and is usually normalized to
100 percent. In this research work, in order to determine the
optimal number of eigenvalues (which yield maximum
classification accuracy), eigenvalues at various confidence
levels have been used. In this context, confidence interval
has been varied in the range of 92-99 percent, and corre-
sponding number of eigenvalues, which lie within the given
confidence interval, have been determined from Fig. 4a. The
principal components corresponding to these eigenvalues
have been used for the classification. Figs. 4b and 4c demon-
strate the number of eigenvalues (determined form Fig. 4a)
and classification accuracy corresponding to various values
of confidence intervals. It is observed from Fig. 4c that clas-
sification accuracy increases up to 96 percent confidence
interval, but, it deteriorates beyond this point. Therefore, in
this work, 28 principal components lying within 96 percent
confidence interval have been used for classification.

Likewise, mRMR selects an ordered list of genes in
terms of their discriminating power. Therefore, to find an
optimal set of gene expressions, we have selected multi-
ple sets (varying in size) of genes, and analyzed their
effect on the classification accuracy achieved by the deci-
sion models. Fig. 5 reveals corresponding results, which
show that accuracy gradually increases up to the subset
of data comprising 50 gene expressions, and after that
accuracy either decreases or maintains the same value.
Therefore, we have used gene subset comprising 50 genes
for classification of KentRidge data set.
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Fig. 5. Classification accuracy of various decision models for gene data
sets selected by mRMR.

A similar process of feature selection through PCA
and mRMR has also been applied on Notterman and E-
GEOD-40966 data sets. Table 3 summarizes the number
of genes selected by various feature selection strategies
for different data sets. Principal components are shown
in case of PCA in Table 3.

5.2 Parameter Selection for Various Decision
Models Pertaining to Gene Selection Strategies

Performance of decision models depends on several param-
eters. Therefore, it is desirable to find optimal values of
these parameters prior to classification. Analysis of optimal
values of parameters has been divided into two sections;
one, dealing with SVM models, and the second, dealing
with rest of the models.

5.2.1 Optimal Parameter Values for SVM Kernels

Individual SVM models are trained on optimal parameters,
however, there is no standard way to find optimal values of
these parameters. In this research study, grid search method
[42] has been employed by carefully setting grid range and
step size. Polynomial kernel involves four parameters; r, y,
and g. In order to simplify the problem, g and r have been
set to 3 and 1, respectively. Similarly, » = 1 has been fixed
for sigmoid kernel. The optimal value of ¢ parameter has
been obtained by adjusting the grid range of ¢ = [0, ..., 100]
with Ac =1 for all the kernels. Similarly, the optimal value
of y has been found by setting the grid range of y =
[0.001,...,0.1] with Ay =0.002 for RBF, polynomial, and
sigmoid kernels. For each combination of ¢ and y, 10-fold
cross-validation has been applied on the data sets, and

TABLE 3
Number of Gene Expressions Selected by Various
Feature Selection Strategies for Different Data Sets

KentRidge Notterman E-GEOD-40966
PCA 28 33 25
mRMR 50 120 140
F-Score 26 95 130
Chi-square 135 185 165
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TABLE 4
Optimal Values of Parameters for Different
SVM Decision Models

Chi-Sq/ F-score mRMR PCA

original

c Y c 14 c 14 C 14
BioGPS data set
Linear 36 — — — — — — —
RBF 16 0.009 — — — — — —
Sigm 27  0.011 — — — — — —
Poly 17 0.001 — — — — — —
KentRidge data set
Linear 19 — 59 — 01 — 01 —
RBF 01 0059 25 0.021 10 0.011 25 0.053
Sigm 26 0.057 17 0.071 38 0.033 18 0.065
Poly 04 0011 13 0.075 68 0.013 17 0.021
Notterman data set
Linear 05 — 01 — 01 — 01 —
RBF 08 0.001 05 0.005 27 0.011 19 0.061
Sigm 32 0011 28 0.001 24 0.021 06 0.055
Poly 11 0.001 13 0.021 20 0.037 40 0.029
E-GEOD-40966 data set
Linear 25 — 04 — 01 — 01 —
RBF 01 0.077 02 0.063 28 0.001 07 0.059
Sigm 03 0.001 12 0.041 32 0.003 18 0.043
Poly 13 0.001 34 008 01 0.021 06 0.001

classification accuracy has been calculated based on the pre-
dicted labels. The combination of parameter values where
maximum classification accuracy is achieved has been
selected to be optimal.

Table 4 summarizes the optimal values of the parameters
for BioGPS data set, and different variants of other data sets
corresponding to individual feature selection strategies. The
results in Table 4 reveal that optimal values do not depend
on the type of SVM model rather they depend on the nature
of data.

Another parameter known as number of folds (F) is used
for cross-validation strategy, which may also influence the
performance of SVM models somehow. Therefore, we have
measured the classification accuracy and time of SVM mod-
els over a potential range of F for all the data sets. Fig. 6
demonstrates the results for KentRidge and BioGPS data
sets. Analysis of Figs. 6b and 6d reveals that the classifica-
tion time exponentially increases as data are partitioned
into more folds, and vice versa. The classification accuracy
presented in Figs. 6a and 6c, on the other hand, seems inde-
pendent of F. We observed almost similar behavior for Not-
terman and E-GEOD-40966 data sets. Therefore, a smaller
value of 10 has been chosen for F owing to the exponential
increase in time with increasing value of F.

5.2.2 Optimal Parameter Values for PNN and KNN
Decision Models

Performance of PNN kernel depends on spread of the
Gaussian function. Optimal value of the spread has been
found by varying it in a suitable range of 0.5-1, and by mea-
suring corresponding classification accuracy and time.
Fig. 7 presents the results. Fig. 7a demonstrates that smaller
level of spread is suitable as far as the classification accuracy
is concerned. Contrary, the level of spread has no influence
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Fig. 6. F versus (a) classification accuracy and (b) time of KentRidge
data, F versus (c) classification accuracy and (d) time of BioGPS data.

on the classification time. It is more or less the same for all
the spread levels.

Likewise, performance of KNN classifier depends on
number of neighbors (IN) to be used in the classification pro-
cess. Therefore, in this research study, effect of N on classifi-
cation accuracy and time has been studied. The results are
shown in Fig. 8. Fig. 8b demonstrates an increase in the
classification time with the increase in N. Fig. 8a reflects
that classification accuracy only increases upto N = 3, and
beyond this point classification performance either deterio-
rates or remains the same.

5.3 Selected Gene Expressions, and Optimized SVM
Classifiers Based Decision Modeling

Selected gene expressions are given as input to the opti-

mized decision models for classification, and individual pre-

dictions of various models are collected. Individual SVM

predictions are stacked, and then majority voting scheme is

applied to find ensemble prediction. For instance, Fig. 9
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Fig. 7. Spread versus (a) classification accuracy and (b) classification
time elapsed in 10-fold cross-validation through PNN classifier.
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demonstrates predictions of individual SVM models and
the GECC for BioGPS data set. In Fig. 9, data samples
are along the horizontal axis, whereas stacked labels are
along the vertical axis. First 37 data samples are normal,
whereas remaining 94 samples are malignant. Each nor-
mal sample will be considered as wrongly classified if
+1 label is assigned to it, and vice versa. For instance,
fifth and seventh samples in Fig. 9 are actually normal,
but have been misclassified by the linear classifier, and
have been assigned +1 label.

There is a significant improvement in the performance of
GECC compared to individual SVM models. It is evident
from Fig. 9 that samples which were hard to classify for
individual SVM models are better classified by GECC. This
is mainly due to the ability of ensemble GECC to learn from
the predictions of various decision models. Fig. 9 also dem-
onstrates that the hard samples of BioGPS data set (fifth,
16th, 34th and 43rd sample in Fig. 9) are correctly classified
by the proposed GECC technique due to the concept of
weighted majority voting.

5.4 Performance on the Standard Data Sets

To measure the efficacy of the proposed GECC, various per-
formance measures have been calculated. Table 5 shows the
values of these measures for individual SVM decision
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Fig. 9. Predictions of individual SVM models (collected through 10-fold
cross-validation) and the proposed GECC for BioGPS data set.

models as well as for the proposed GECC model when used
for the classification of different data sets.

The results demonstrate better performance of GECC
compared to individual models. Ensemble classification
accuracy for BioGPS data set is 98.67 percent, which is
2.49 percent higher compared to individual best accuracy
of 96.18 percent, achieved by using sigmoid kernel.
Likewise, the results prove clear superiority of GECC
over individual SVM models regardless of the choice
of gene selection strategy for KentRidge, Notterman and
E-GEOD-40966 data sets. The best possible accuracy of
GECC is 98.78, 97.22 and 97.71 percent, respectively, for
F-score based selected sets of KentRidge, Notterman and
E-GEOD-40966 data sets. These accuracy values, respec-
tively, are 3.62, 2.78, and 3.71 percent higher compared
to individual best achieved by using sigmoid kernel for
these data sets. Moreover, there is also an improvement

TABLE 5
Performance Analysis for Various Combinations of Decision Models and Feature Selection Strategies
Linear RBF Sigm Poly GECC

Acc Acc Acc Acc Acc Sens Spec MCC FM
BioGPS data set

94.63 94.66 96.18 93.89 98.67 0.97 0.98 0.96 0.98
KentRidge data set
mRMR 88.71 90.32 93.54 92.32 97.03 0.98 0.96 0.93 0.98
F-Score 90.32 91.94 95.16 93.54 98.78 0.98 0.97 0.96 0.98
Chi-sq 82.26 87.10 93.55 91.93 97.01 0.98 0.95 0.93 0.98
PCA 82.26 87.10 85.48 85.48 91.94 0.90 0.95 0.83 0.94
Notterman data set
mRMR 86.11 86.11 91.67 88.89 94.44 0.94 0.94 0.89 0.94
F-Score 91.67 91.67 94.44 94.44 97.22 0.94 1.00 0.95 0.97
Chi-sq 80.56 83.33 88.89 83.33 91.67 0.89 0.94 0.83 0.91
PCA 77.78 80.56 86.11 83.33 88.89 0.94 0.83 0.78 0.89
E-GEOD-40966data set
mRMR 90.57 9143 93.14 92.86 97.14 0.97 0.98 0.94 0.98
F-Score 92.29 93.43 94.00 93.71 97.71 0.96 0.99 0.95 0.97
Chi-sq 89.71 90.29 92.00 90.86 95.71 0.95 0.97 0.91 0.96
PCA 86.57 87.71 90.29 88.86 94.29 0.93 0.96 0.88 0.95

—Simple and italic bold face entries, respectively, correspond to the best performance of GECC and individual classifiers on a given data set.
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Fig. 10. ROC curves of various decision models for (a) KentRidge data
set (using F-Score), and (b) BioGPS data set.

in terms of other performance measures for all the data
sets. Further, results demonstrate that F-Score performs
better because it achieves maximum possible separability
between the instances of normal and malignant classes.
The better performance of F-Score may be attributed to
the characteristics of the underlying data set, which may
have good separation between the values of gene expres-
sions for the samples of two classes.

ROC curves [43] are an important parameter to mea-
sure the performance of classifiers. They are created by
plotting true positive rate (TPR) against false positive
rate (FPR). In order to plot ROC curve, the values of
TPR and FPR of the entire test samples are obtained by
applying threshold H in the range of [0-1]. In this study,
the performance of the individual models and the pro-
posed GECC on several colon data sets has also been
measured in terms of ROC curves, and corresponding
area under the curve (AUC). Fig. 10 presents ROC
curves for various decision models when applied on
BioGPS data set and F-Score based variant of KentRidge
data set. It is evident from the figure that the proposed
GECC has better ROC curve compared to other decision
models. A similar behavior has been observed for Not-
terman and E-GEOD-40966 data sets, however, ROC
curves have been shown only for two data sets keeping
simplicity in mind.

AUC is usually measured from ROC curves. It is a scalar
value that represents an overall performance of the decision
model. A decision model is near to optimal if the value of
AUC is close to one. Table 6 presents AUC of ROC curves
for various decision models. AUC of GECC is higher com-
pared to AUC of individual decision models for BioGPS
and four variants of other data sets. The better AUC is
largely due to the integrated decision power of various
SVM models in one GECC.
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TABLE 6
Performance Comparison of Decision Models in Terms of AUC
Linear RBF  Sigmoid Poly GECC

BioGPS data set
Original data  0.9356  0.9323 0.9516 0.8763  0.9759
KentRidge data set
mRMR 0.8765  0.8965 0.9385 0.9084 0.9797
F-Score 0.9052  0.9064 0.9552 0.9450 0.9886
Chi-square 0.8321  0.8865 0.9377 0.9036 0.9645
PCA 0.8232  0.8865 0.8612 0.8615  0.9254
Notterman data set
mRMR 0.8693  0.8752 0.9210 0.8962  0.9452
F-Score 09199 0.9215 0.9387 0.9398  0.9799
Chi-square 0.8164 0.8497 0.8751 0.8439  0.9200
PCA 0.7991 0.8135 0.8586 0.8465 0.9029
E-GEOD-40966 data set
mRMR 0.8987  0.9235 0.9463 0.9287 0.9705
F-Score 09165 0.9487 0.9586 0.9535 0.9832
Chi-square 0.8757  0.8865 0.9365 09174  0.9607
PCA 0.8598  0.8654 0.9174 0.8978  0.9386

—Simple and italic bold face entries, respectively, correspond to the best perfor-
mance of the proposed GECC and individual classifiers on a given data set.

5.5 Computational Complexity of the GECC

Technique
In this section, we have calculated CPU time elapsed from
the start to the end of different phases of the proposed
GECC technique such as gene selection, parameter optimi-
zation with 10-fold cross-validation, and weight optimiza-
tion for majority vote has been measured in seconds.

Table 7 shows the corresponding results.

TABLE 7
Computational Time Requirements of GECC (sec)

BioGPS KentRidge Notterman E-GEOD-40966

Gene selection

mRMR 3.56 6.77 13.58 15.89
Chi-square  0.33 0.72 0.98 1.06
F-Score 0.68 0.99 1.58 3.01
PCA 0.048 7.76 16.02 32.25
Parameter optimization using 10-fold cross-validation
Linear 1.25 2.22 2.62 3.30
RBF 56.02 120.02 136.23 179.23
Sigmoid 63.54 124.25 140.28 184.28
Poly 65.87 129.98 142.56 188.56
GECC 186.68 376.47 421.69 555.37
Weight optimization for majority vote

GECC 0.3121 0.4080 0.3356 0.3897
Training on optimal parameter values

Linear 0.0100 0.0212 0.0252 0.0330
RBF 0.0116 0.0236 0.0272 0.0346
Sigmoid 0.0123 0.0252 0.0280 0.0360
Poly 0.0127 0.0260 0.0286 0.0374
GECC 0.0466 0.0960 0.1090 0.1410
Testing on optimal parameter values

Linear 0.0024 0.0031 0.0037 0.0040
RBF 0.0026 0.0033 0.0040 0.0042
Sigmoid 0.0027 0.0038 0.0041 0.0044
Poly 0.0030 0.0037 0.0043 0.0045
GECC 0.0117 0.0148 0.0182 0.0191




1142 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.11, NO.6, NOVEMBER/DECEMBER 2014
TABLE 8 TABLE 9
Performance Comparison of GECC with Some Performance Comparison of GECC with Some Existing
Existing Schemes and Decision Models in Terms Schemes in Terms of CPU Time Requirements (sec)
of Classification Accuracy
Ref. Training time Testing time
Ref. Acc Sens Spec MCC FM BioGPS data set
BioGPS data set Lietal. [17] 0.3055 0.0105
KNN — 91.15 0.89 088 090 0.90 Venkatesh et al. [20] 0.0401 0.0224
PNN — 90.08 065 087 075 0.79 Kulkarni et al. [21] 0.3564 0.0302
Decision tree — 9084 092 093 082 087 Lee et al. [22] 0.2552 0.0125
Lietal [17] 9123 0.89 090 088 0.88 Tong et al. [23] 0.3870 0.0826
Venkatesh etal. [20] 9125 0.89 093 090 0.89 GECC — 0.0466 0.0117
Kulkarnietal.  [21] 9445 096 096 097 097 KentRidge data set
Lee et al. [22] 80.23 0.79 0.81 0.77 0.81 Lietal [17] 0.5252 0.0123
Tong etal. [23] 93.55 0.86 0.98 0.86 0.90 Venkatesh et al. [20] 0.1150 0.0225
GECC — 9867 097 098 09 098 Kulkarni et al. [21] 0.5650 0.0312
KentRidge data set Lee et al. [22] 0.4230 0.0156
KNN — 8548 077 090 0.68 0.79 Tong et al. [23] 0.5692 0.0869
PNN — 8709 077 093 071 081 GECC — 0.0960 0.0148
Decision tree — 8548 073 095 071 0.80 Notterman data set
Liet al. []7] 89.01 0.88 0.90 0.87 0.88 Lietal [17] 0.5826 0.0130
Venkateshet al. [20] 9440 0.92 0.93 0.93 0.92 Venkatesh et al. [20] 0.1057 0.0228
Kulkarni et al. [21] 98.33 0.99 0.98 0.97 0.97 Kulkarni et al. [21] 0.6239 0.0316
Lee et al. [22] 76.85 0.77 0.79 0.70 0.74 Lee et al. [22] 0.4805 0.0132
Tong et al. [23] 90.32 0.82 0.95 0.79 0.86 Tong etal. [23] 0.5974 0.0898
GECC — 9878 098 097 096 098 GECC - 0.1090 0.0182
Notterman data set E-GEOD-40966 data set
PNN — 7500 067 083 051 073 Venkatesh et al. [20] 0.2135 0.0227
Decision tree — 77.78 0.67 0.89 0.57 0.75 Kulkarni et al. [21] 0.6903 0.0341
Lietal [17] 8056 0.78 0.83 0.61 0.80 Lee et al. [22] 0.5237 0.0128
Venkaetshetal. [20] 86.11 0.83 0.89 0.72 0.86 Tong etal [23] 0.6704 0.0967
Kulkarni et al. [21] 91.67 089 094 083 091 GECC _ 0.1410 0.0191
Lee et al. [22] 8333 083 083 0.67 0.83
Tong et al. [23] 8889 089 089 078 0.89 —Simple and italic bold face entries, respectively, correspond to the time of
GECC — 9722 094 100 095 097 GECC and the minimum time of previous techniques.
E-GEOD-40966 data set
11511\\1111\\]1 _ Si:g; 8:22 8:;2 8:22 8:2; 5.6 Performance Comparison of GECC with Some
Decision tree — 8629 088 08 072 0.88 Existing Schemes and Classifiers
Lietal. [17] 8857 0.89 088 077 0.90 The performance of GECC has been compared with several
Venkaetsh etal. [20] 9057 091 090 081 092 existing gene based colon cancer detection techniques in
Kulkarnietal. — [21] 9229 094 090 084 094 terms of classification accuracy and CPU time requirements.
Lee et al. [22] 8886 0.89 089 077 0.90 In thi fi hni [171, 1201, [21], [22], [23] h
Tong et al. [23] 9114 093 088 082 093 1 this context, five techniques [17], 1201, 1211, 122], [23] have
g

GECC 9771 096 099 095 097 been selected. These techniques have been implemented in

—Simple and italic bold face entries, respectively, correspond to the best
performance of the proposed GECC and previous techniques on a given
data set.

The parameter optimization time of GECC, shown in
the second section of the table, is merely the sum of the
optimization times of individual models. Once optimal
values of parameters and weights for the majority votes
have been computed, they are directly used for the train-
ing and testing of samples. The training and testing time
on optimal values is shown in the last two sections of
Table 7. The testing time involves an overhead of
weighted majority voting in addition to the time con-
sumed by individual models. The results in Table 7
show that the proposed GECC technique is computation-
ally tractable even the maximum training time for the
largest data set (E-GEOD-40966) is 35.25+ 555.37 +
0.39 = 591.01 sec only when PCA has been used as the
underlying gene selection strategy.

Matlab, and have been tested on the same system. Further,
the effectiveness of GECC has also been compared with a
few commonly used decision models, like, KNN, PNN and
decision trees. Table 8 presents a comparison of the classifi-
cation accuracy of the GECC with previously published
techniques and classifiers.

GECC exhibits performance improvement in terms of all
the performance measures. Classification accuracy of GECC
on BioGPS, KentRidge, Notterman and E-GEOD-40966 data
set, respectively, is 4.22, 0.45, 5.55 and 5.42 percent higher
compared to the best accuracy achieved by previous techni-
ques. Further, GECC produces superior classification results
compared to KNN, PNN and decision tree. Such a notewor-
thy performance improvement validates the efficacy of the
proposed GECC technique for detection of colon cancer,
and also encourages its use for classification of other com-
plex gene based data sets.

Moreover, the performance of the GECC technique
has been compared with previously published techni-
ques in terms of the CPU time requirements. In this
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TABLE 10
Binary-Class Gene Expression Data Sets
Data set Ref. No.of Samples Samples Total
Genes of C; of C, samples
CNS [44] 7,129 39 21 60
DLBCL [45] 7,129 58 19 77
Leukemia [46] 7,129 25 47 72
Lung-I [47]1 12,533 150 31 181
Lung-II [48] 7,129 86 10 96
Prostate-I [49] 12,600 52 50 102
Prostate-I ~ [50] 12,625 38 50 88
Prostate-III  [51] 12,626 24 09 33

context, the training and testing time of these techniques
has been measured on optimal parameter values. Table 9
shows the results which reveal that the proposed GECC
technique is computationally tractable, and consumes
quite reasonable CPU time. The training time of GECC
is smaller compared to other techniques except the
Venkatesh et al. [20], which shows comparable results.

5.7 Performance Analysis of GECC on Other
Complex Gene Expression Data Sets

In this section, we have validated the effectiveness of the
proposed GECC on other complex binary-class gene expres-
sion data sets. This has been done to demonstrate the appli-
cability of GECC as a general purpose gene based cancer
detection technique. Table 10 provides a brief description of
these data sets.

These data sets have enormously large dimensional-
ity. Therefore, feature selection strategies (PCA, F-Score,
chi-square and mRMR) have been applied to select
meaningful features. Table 11 summarizes the number
of features selected by various feature selection strate-
gies. In case of PCA, confidence interval has been
provided in Table 11, and principal components within
the given confidence interval have been wused for
classification.

Linear, RBF, sigmoid, polynomial and ensemble GECC
have been employed for the classification of data sets. It is
noteworthy that features highlighted in Table 11 have been
used for the classification, and corresponding classification
accuracies have been reported in Table 12. It can reasonably
be concluded that GECC can effectively detect several
cancer types.

TABLE 11
Number of Features Selected by Feature Selection Strategies
for Some Binary-Class Gene Expression Data Sets

Original mRMR PCA Chi-square F-score
CNS 7,129 175 96 180 165
DLBCL 7,129 160 96 210 155
Leukemia 7,129 180 97 220 135
Lung-I 12,533 280 97 295 235
Lung-II 7,129 130 96 195 140
Prostate-I 12,600 235 96 410 220
Prostate-II 12,625 285 97 395 235
Prostate-IIl 12,626 285 96 425 280

—Bold face entries correspond to the features where maximum accuracy is
achieved by GECC for a given data set.

1143
TABLE 12
Performance of GECC on Some Binary-Class
Gene Expression Data Sets

Linear RBF Sigmoid Polynomial GECC

CNS 91.67 93.33 95.00 96.67 98.33
DLBCL 89.61 9221 94.81 93.51 98.70
Leukemia 91.67  93.06 97.22 95.83 98.61
Lung-I 9227 9392 97.79 96.13 99.45
Lung-II 81.25 82.29 85.42 83.33 88.54
Prostate-1 89.22  91.98 94.12 93.14 96.08
Prostate-Il ~ 88.64  89.77 92.05 90.91 94.32
Prostate-III 9091  93.94 96.97 96.97 100.00

—Bold face entries correspond to the individual best performance of a classifier
for a given data set.

6 CONCLUSION

The primary focus of our work was the development of a
robust and accurate classification technique, called GECC,
for gene expression based prediction of colon cancer. The
proposed GECC technique employs an ensemble of various
SVM decision models for classification. The experiments
have been conducted on four standard colon cancer data
sets. To reduce the large size of the data sets, four different
feature selection strategies have been employed. Analysis
reveals that genes selected by F-Score are better able to clas-
sify different data sets compared to the genes selected by
other techniques. Amongst the multiple individual decision
models, sigmoid SVM performs best for all the data sets.
Ensemble SVM greatly increases performance compared to
individual SVM decision models with a slight increase in
computational time. Classification accuracy of GECC for
BioGPS, KentRidge, Notterman and E-GEOD-40966 data set
is 98.67, 98.78, 97.22 and 97.71 percent, respectively. These
values are better compared to the individual best accuracies
of 96.18, 95.16, 94.44 and 94.00 percent achieved by sigmoid
SVM, respectively, for BioGPS, KentRidge, Notterman and
E-GEOD-40966 data set. Performance of GECC has also
been validated on several other complex gene expression
data sets, and quite promising classification results have
been achieved. Therefore, we can reasonably conclude that
the proposed GECC can help biologists not only in accu-
rately predicting the cancer of colon, but of other body parts
as well. There are two possible future directions along this
study. First possibility is to unite multiple feature selection
methods i.e. selecting genes using one technique and then
applying another on the selected genes. Second option is to
assign weight to each gene by gene selection techniques and
then apply maximum voting for selecting discerning genes.
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