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a b s t r a c t

Automatic classification of colon into normal and malignant classes is complex due to numerous factors
including similar colors in different biological constituents of histopathological imagery. Therefore, such
techniques, which exploit the textural and geometric properties of constituents of colon tissues, are
desired. In this paper, a novel feature extraction strategy that mathematically models the geometric
characteristics of constituents of colon tissues is proposed. In this study, we also show that the hybrid
feature space encompassing diverse knowledge about the tissues' characteristics is quite promising for
classification of colon biopsy images. This paper thus presents a hybrid feature space based colon
classification (HFS-CC) technique, which utilizes hybrid features for differentiating normal and
malignant colon samples. The hybrid feature space is formed to provide the classifier different types
of discriminative features such as features having rich information about geometric structure and image
texture. Along with the proposed geometric features, a few conventional features such as morphological,
texture, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) are also used to
develop a hybrid feature set. The SIFT features are reduced using minimum redundancy and maximum
relevancy (mRMR). Various kernels of support vector machines (SVM) are employed as classifiers, and
their performance is analyzed on 174 colon biopsy images. The proposed geometric features have
achieved an accuracy of 92.62%, thereby showing their effectiveness. Moreover, the proposed HFS-CC
technique achieves 98.07% testing and 99.18% training accuracy. The better performance of HFS-CC is
largely due to the discerning ability of the proposed geometric features and the developed hybrid
feature space.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Medical imaging has gained much importance in the last few
decades, especially in analyzing different body parts for predicting
certain disorders/diseases. Microscopic imaging is one of the
medical imaging techniques, wherein the images of biopsy slides
are captured. Biopsy images have well-defined organization of
tissues and connected components, depending upon the body part
from which they are taken [1]. The same is true for colon biopsy
images, which are used in our problem for cancer detection.
Biologically different constituents in a colon biopsy image can be
identified by looking at the spatial organization of its constituents.

Microscopic analysis is the commonly practiced technique of
colon cancer diagnosis, wherein histopathologists visually exam-
ine the deformation of tissues under microscope, and decide

whether the geometric structure and organizational arrangement
of sample tissues belong to the class of malignant or normal colon.
Microscopic analysis is time consuming as well as subjective. The
main reason behind subjectivity is the fact that quantitative cancer
grades are assigned depending upon the observed morphology of
tissues by the histopathologists. This process also leads to inter/
intra-observer variability as quantitative grades assigned to the
same sample by different histopathologists, or even by one
histopathologist, may vary at times [2,3]. In order to alleviate such
problems in diagnosis, researchers are working since long to find
automatic quantitative tools, which could measure the degree of
deformation and assign quantitative cancer grades to the colon
samples.

The research in the field of colon cancer is in various dimen-
sions. A larger subset of the colon cancer detection techniques has
been summarized in a recent survey reported by Rathore et al. [4].
Some authors have performed analysis on hyperspectral data of
colon biopsies [5,6]. In these schemes, authors select one spectral
band amongst several bands of hyperspectral cube, calculate
image features, and then based on these features classify samples
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into multiple classes. Some researchers have studied thousands of
human genes in parallel by using two variants of microarrays [7,8].
Their aim was to identify such genetic alterations, which were
supposed to be responsible for colon cancer. Like genes, blood
serum also deviates from its normal composition in case of colon
cancer. Researchers have exploited this variation, and have used
laser-induced fluorescence and Raman spectroscopy of blood
serum for cancer detection [9,10].

Some researchers have exploited the variation in the texture of
normal and malignant colon biopsy images for cancer detection. In
this context, Esgiar et al. analyzed distinctiveness of six texture
features (angular second moment, contrast, correlation, entropy,
inverse difference moment, and dissimilarity) for classification of
colon biopsy images [11]. They found the combination of entropy
and correlation to be the most distinctive feature set, providing an
overall accuracy of 90.2%. They further extended the idea by
introducing fractal dimensions into the classification process, and
proved that a combination of entropy, correlation and image
fractal dimensions yields classification accuracy of 94.1% [12].
Followed by their work, Masood et al. proposed a few valuable
methodologies for classification of colon. In their first method,
they calculated morphological features of shape, size and orienta-
tion, and gray-level co-occurrence matrix (GLCM) based features
of energy, inertia, and local homogeneity from colon biopsy
images [13]. They employed polynomial SVM classifier, and
achieved classification accuracy of 84% and 90% using morpholo-
gical and GLCM based features, respectively. Masood et al. further
extended the previous work [13], and calculated circular local
binary patterns in order to classify colon biopsy images [14]. They
obtained an accuracy of 90% by employing Gaussian SVM for
classification. Further, Rathore et al. proposed a colon biopsy
image based classification technique (CBIC) [15], wherein a hybrid
feature set comprising traditional histogram of oriented gradients
based features, and novel variants of statistical moments and
Haralick texture features has been used for classification of colon
biopsy images. A majority voting based ensemble of SVM classi-
fiers has been used for classification, and 98.85% classification
accuracy has been observed.

Recently, Altunbay et al. proposed a colon cancer detection
technique [16], wherein they constructed a graph on different
objects, obtained by using circle fitting algorithm [1] on the white,
pink and purple clusters of colon biopsy image. Features of degree,
average clustering coefficient, and diameter are computed from
the graphs. The features are then used to classify given samples by
using linear SVM kernel. In addition, Ozdemir et al. presented a
method for automated colon cancer detection [17]. In this work,
reference graphs of a few normal images are generated by
employing previously proposed method of graph creation [18],
and are stored for further referencing. Some query graphs are
generated from the test images, and are searched in the reference
graphs. Three most similar graphs are found in the reference

images. Finally, normal or malignant class is assigned to the test
sample based on the degree of similarity of the query graph with
the three most similar graphs.

The techniques mentioned in the previous paragraphs have a
few limitations. First, graph based techniques [16,17] are compu-
tationally expensive. Second, texture features based techniques
[11–15] have exploited general texture features for classification,
and have not exploited the background knowledge about the
morphology of colon tissues for classification. Therefore, a
computer-aided diagnostic technique, which could exploit the
morphology of normal and malignant colon tissues in a compu-
tationally tractable manner, is required.

In this research, a novel hybrid feature space based colon
classification (HFS-CC) technique has been proposed for robust
and effective classification of colon biopsy images. We propose a
novel feature type that mathematically quantifies the geometric
structure of constituents of colon tissues. Further, we compute
some other feature types such as morphological, SIFT, EFDs, and
texture features, and combine those features with geometric
features to form a hybrid feature set. HFS-CC differs from its
previous counterparts in two aspects. First, it incorporates back-
ground knowledge about tissues organization into the classifica-
tion process by introducing novel geometric features, thus leads to
effective and promising results. Second, it caters different cate-
gories of features, and exploits positive aspects of each category.
There are several abbreviations used in subsequent sections. These
abbreviations are given in Table 1.

The remainder of this paper is organized as follows. Section 2
describes the structure of normal and malignant colon tissues.
Section 3 presents the proposed scheme in detail. Section 4
describes performance measures. Section 5 demonstrates experi-
mental results, and Section 6 concludes the paper.

2. Cell structure: Normal and malignant colon tissues

Normal colon tissues have well-defined organizational struc-
ture. There are three constituents of a normal colon tissue, namely,
epithelial cells, non-epithelial cells, and connecting tissues. The
detailed structure of a normal colon tissue is shown in Fig. 1(a).
Lumen lies in the middle of the tissue and is surrounded by
epithelial cells that form glandular structure, whereas, non-
epithelial cells lie in between glandular structures and are known
as stroma. Cells and connected tissues are organized and coherent
in case of normal colon. But, this organizational structure deviates
considerably for malignant tissues as shown in Fig. 1(b)–(d).

Histopathologists analyze the samples under microscope and
decide whether tissue is normal or not. Furthermore, histopathol-
ogists also assign quantitative cancer grades to the malignant
colon samples. Grade of colon cancer is the differentiability level of
malignant tissues from normal ones. There are three colon cancer
grades: well-, moderately-, and poorly differentiable. In a well
differentiable grade, tissues are slightly similar to normal ones as
shown in Fig. 1(b). In this particular grade, cancer progresses at
low speed. In moderately differentiable cancer grade, tissues are
different from normal ones as shown in Fig. 1(c), and cancer
progresses at moderate speed in this grade. In a poorly differenti-
able cancer grade, malignant tissues are totally different from
normal tissues as shown in Fig. 1(d), and cancer progresses at very
high rate in this particular grade.

3. Proposed scheme

The proposed HSF-CC scheme comprises six main stages, namely, pre-
processing, feature extraction, feature reduction, feature concatenation,

Table 1
Abbreviations used in the text.

Acronym Abbreviations

EFDs Elliptic Fourier descriptors
FEM Feature extraction module
H&E Hematoxylin & Eosin
MCC Matthews correlation coefficient
mRMR Minimum redundancy and maximum relevancy
OSDU Object spatial distribution uniformity
OSU Object size uniformity
RBF Radial basis function
SIFT Scale invariant feature transform
SVM Support vector machine
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training/testing data formulation, and classification of images into normal
or malignant categories by using SVM classifier. Fig. 2 presents top-level
architecture of the proposed scheme.

In the proposed HFS-CC scheme, the hybrid features are
extracted from the given dataset after a few pre-processing steps.
The features are then combined for subsequent use in SVM based
classification.

3.1. Pre processing

The main purpose of this stage is to make the dataset suitable
for subsequent operations. Two types of preprocessing are applied
on input images depending upon the requirements of subsequent
feature extraction techniques. These preprocessing methods are
explained in the following text.

3.1.1. Pre-processing for morphological and geometric features
Morphological and geometric features are extracted from

image clusters. This clustering is achieved by running K-Means

algorithm. K-Means is a non-parametric statistically iterative
method, originally developed by Fukunaga et al. for estimation of
gradients of a density function [19], and has extensive use in
computer vision for image clustering [20,21]. In this study,
K-Means algorithm has been applied on color intensities of pixels,
and image pixels have been segregated into three clusters. The
clusters depict pink region (connective tissue components), white
region (luminal structures and epithelial cells), and purple region
(non-epithelial cells) in the image. The clusters are then trans-
formed to binary format using global thresholding method.
Morphological features have been computed from binary clusters,
whereas the binary clusters have been further dilated using Eq. (1)
for geometric features.

f ¼ f � b ð1Þ
where f is the cluster and b is the square structuring element of
size ‘2’. Fig. 3 shows a colon biopsy image and its corresponding
white, pink, and purple clusters achieved after preprocessing.

K-Means divide an image into clusters, but does not separately
identifie pink, white and purple clusters. Therefore, average intensity

Lumen

Gland
boundary

Epithelial
cells

Stroma
a

b c d

Fig. 1. Organizational structure of (a) normal colon tissue, and malignant colon tissues of (b) well-, (c) moderately-, and (d) poorly-differentiable colon cancer grades as
observed under microscope.
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Fig. 2. Schematic diagram of the proposed HFS-CC scheme.
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values of the clusters are calculated for an image in order to identify
the clusters. A white cluster has highest average intensity, a pink
cluster has moderate value, whereas a purple cluster has lowest
value of average intensity. So, the clusters of an image can be easily
distinguished based on this parameter. Fig. 4 demonstrates mean
gray level values for the three clusters.

3.1.2. Pre-processing for SIFT and texture features
Second type of pre-processing is specific to the extraction of

SIFT and texture features. For these features, image is converted
into grayscale in the preprocessing phase.

3.2. Feature extraction

Features provide a mean to translate an image pattern into a set
of discriminatory quantitative values. The ultimate aim of this
stage is to formulate a feature vector for every colon biopsy image.
The individual features are combined to form a composite feature
vector, which is used for image classification. Feature extraction
process has already been explained in Fig. 2. There are five feature
extraction modules (FEM) corresponding to individual feature
extraction strategies. These modules independently extract diverse
features from an image with one exception of elliptic Fourier
descriptors based FEM that utilizes some information supplied by
geometric FEM.

3.2.1. Morphological features
Morphology of tissues plays a pivotal role in determining whether

tissues are normal or malignant. Morphological features provide a
way to convert image morphology into a set of quantitative values.
They have broadly been used in classification [22–24], segmentation
[25], and so on.

Morphological FEM takes binary image clusters as input, and
finds connected components in the clusters. It retains those
connected components having area greater than a certain thresh-
old T (see Section 5.3.2). The number of connected components
satisfying threshold criterion may vary for different clusters, and
are represented by Cw, Cp and Cr for white, pink and purple
clusters, respectively. Nine morphological features, namely, area
(a), perimeter (p), eccentricity (y), Euler number (l), convex area
(x), compactness (o), orientation (e), length of major (m1) and
minor axes (m2) are computed for each connected component of a
cluster. Table 2 describes these features; definitions of morpholo-
gical features have been taken from Gonzalez [26].

Eq. (2) presents morphological feature vectors for individual
connected components.

qwi ¼ ½a p y l m1 m2 x o e�Ti where i¼ 1;2;3; :::;Cw

qpi ¼ ½a p y l m1 m2 x o e�Ti where i¼ 1;2;3; :::;Cp

qri ¼ ½a p y l m1 m2 x o e�Ti where i¼ 1;2;3; :::;Cr

ð2Þ

where qiw, qip and qir are morphological feature vectors for ith
connected component of white, pink and purple clusters,
respectively.

Average values of the nine features obtained from connected
components of a cluster constitute morphological feature vector
for the corresponding cluster. The feature vectors w, p, r for the
white, pink, and purple clusters are given in the following
equation:

w¼ 1
Cw

XCw

i ¼ 1

qwi

" #

p¼ 1
Cp

XCp

i ¼ 1

qpi

" #

r¼ 1
Cr

XCr

i ¼ 1

qri

" #
ð3Þ

The vectors w, p and r are combined to form morphological
feature vector m.

m¼ ½wTpTrT �T ð4Þ

3.2.2. Texture features
Texture features have been quite successfully used in solving

classification related problems [27–29], and especially the classi-
fication of colon biopsies [11,12]. In this work, texture features
have been calculated from the GLCM matrix, which encapsulates
the spatial relationship between pixels of an image. Each entry (i,
j)th in the GLCM defines how many times the pixel with intensity
value i co-occur in a specified relationship with pixel having
intensity value j. The relationship is in terms of two parameters,
which are the relative distance (d) between the pixel of interest
and the neighboring pixel, and their relative orientation θ. Nor-
mally, θ is quantized in four directions (01, 451, 901, 1351) [10]. In

Fig. 3. Image clustering: (a) colon biopsy image, (b) white cluster, (c) pink cluster, and (d) purple cluster.

Fig. 4. Average gray-level values for white, pink and purple clusters.
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this work, texture features have been computed at four possible
directions, and two distances (d¼1,2), thereby resulting in a total
of 8 GLCM matrices. The values of the GLCM matrices have been
averaged in four directions for each distance d, thereby resulting in
two GLCM matrices (for d¼1 and d¼2). The texture features of
randomness (r), contrast (t), correlation (ρ), energy (n), and
homogeneity (h) have been computed from the two GLCM
matrices. The results in the experimental section correspond to
the GLCM that leads to maximum classification capability, which is
the four-directional average GLCM computed at d¼1.

The initial eight GLCM matrices have also been used separately
for classification of colon image dataset. Furthermore, several
combinations of these GLCMs, and a hybrid of the features
computed from these GLCMs have also been investigated. But,
the best results have been achieved for the average four-
directional GLCM computed at d¼1. Table 3 formulates definitions
of texture features and mathematical formulae for their calcula-
tion, as given in Gonzalez and Woods [26].

These features are computed from gray-level co-occurrence
matrix G, where i and j represent indices of its rows and columns.
pij is the ijth term of G divided by the sum of its elements. The
terms mi and mj are the mean, σi and σj are the standard deviation
of ith row and jth column of G. Above mentioned features are
combined to form texture feature vector t.

t ¼ ½r t ρ n h�T ð5Þ

3.2.3. SIFT features
SIFT features, originally proposed by Lowe [30], are normally

used in problems of panoramas reconstruction [31], face identifi-
cation/authentication [32–34], and most importantly, visual object
tracking [35]. However, its diverse and distinctive nature helps
researchers to use it in other application areas. SIFT features are
robust against image scaling, rotation, illumination changes, noise,
and blurry effects. These properties of SIFT features make them a
good choice for classification of colon samples.

SIFT features are extracted through a staged filtering process. In
the first step, key points are localized in an image. To this end,
original image is repeatedly convolved with Gaussian to produce
convolved scale-space images. Then, adjacent Gaussian convolved
images are subtracted to produce difference of Gaussian images.
After calculating difference at one scale, original image is down-
sampled by a factor of 2, and process is repeated until reaching
lowest possible scale. First step detects large number of key points,
which are reduced in the next step. In the second step, each pixel
is matched against 8 neighbors in its own scale and 9 neighbors in
scales above and below it. The points having their value either
greater or smaller compared to all the neighboring pixels retain
after this step. In the third step, unstable key points i.e. the points
that are poorly localized along edges or have poor contrast are
discarded.

Finally, orientations and descriptors are assigned to the remain-
ing key points. Orientations are assigned based on directions of
local image gradient. For calculation of descriptors, magnitude
and orientation values of pixels lying in 16�16 window around
a given pixel are used to compute 16 orientation histograms.
These histograms contain samples from 4�4 sub-regions of the
given window, and have 8 bins each. The magnitudes and
orientations are further smoothed by a Gaussian function with
equal to one half the width of the descriptor window. The
descriptor then becomes a vector of all the values of these
histograms. Since there are 16 histograms with 8 bins each,
therefore, the vector has 128 elements. Descriptor vector is finally
normalized to make it independent of linear and non-linear
illumination changes.

In this particular research study, SIFT features are calculated for
the given dataset. SIFT feature vector for an image comprises
orientations and descriptors of SIFT key points of that particular
image. The number of SIFT key points may vary from image to
image, therefore, most distinctive S key points are picked from
each image to make equal sized feature vectors. The libsiftfast-1.2
library [36] has been used for feature extraction. SIFT feature

Table 2
Morphological features.

Feature Definition

Area (a) The number of pixels in a region.
Compactness (o) It is defined as (perimeter)2/area.
Convex area (x) The number of pixels in convex image.
Eccentricity (y) The ratio of the distance between the foci of the ellipse and its major axis length.
Euler number (l) The number of objects in the region minus number of holes in those objects.
Major axis (m1) The length of the major axis of the ellipse. Measured in number of pixels.
Minor axis (m2) The length of the minor axis of the ellipse. Measured in number of pixels.
Orientation (e) The angle between the horizontal axis and the object.
Perimeter (p) The number of pixels in the boundary of the region.

Table 3
Texture features.

Feature Equation Definition

Contrast
t ¼ PK

i ¼ 1

PK
j ¼ 1

ði� jÞ2pij
Measures the intensity contrast between a pixel and its neighbor over the entire image.

Correlation
ρ¼ PK

i ¼ 1

PK
j ¼ 1

ði�mi Þðj�mj Þpij
σiσj

Measures the degree of correlation between a pixel and its neighbors over the entire image.

Energy
n¼ PK

i ¼ 1

PK
j ¼ 1

pij
2

Measures uniformity in the image.

Homogeneity
h¼ PK

i ¼ 1

PK
j ¼ 1

pij
1þ j i� jj

Measures the spatial closeness of the distribution of elements in G to the diagonal.

Randomness
r¼ � PK

i ¼ 1

PK
j ¼ 1

pijlog 2pij
Measures the randomness of the elements of gray-level co-occurrence matrix.
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vector has the following composition.

θ¼ ½θ1 θ2 θ3::: θS�
qi ¼ ½q1 q2 q3 ::: q128�Ti where i¼ 1;2;3; :::; S

sn ¼ ½θ qT
1 qT

2 qT
3 ::: qT

S �T
ð6Þ

In Eq. (6), θ contains orientations of S points, whereas qi vector
contains features of ith SIFT point. Finally orientations and features
of S points are combined to form SIFT fetaure vector sn.

3.2.3.1. SIFT feature reduction. In classification problems, huge size,
imbalanced nature and high dimensionality of training dataset
mainly cause the classification algorithms to suffer in accurately
predicting the samples. Therefore, data must be reduced in size
prior training a classifier. In our classification problem, SIFT
features have quite large size. Therefore, in order to alleviate the
curse of dimensionality issues, SIFT features have been reduced by
using minimum redundancy and maximum relevance (mRMR)
method [37]. Fig. 5 demonstrates dimensionality reduction process
for SIFT features. mRMR model takes original SIFT feature vector sn

and corresponding image labels b1,b2,…,b174 as input, and returns
reduced feature vector s.

3.2.4. Proposed geometric features
In a normal colon tissue, epithelial cells and lumen are nearly

elliptic, whereas, in a malignant colon tissue, epithelial cells and
lumen merge together, thereby resulting in irregular shaped white
regions. Furthermore, the epithelial cells in a normal colon tissue
are elliptic, and have symmetry in their sizes and distribution. On
the other hand, the epithelial cells in a malignant colon tissue are
irregular, and have no symmetry in their distribution and sizes.
Normal and malignant colon tissues are shown in Fig. 6 for
comparison.

In this research study, we speculated that this variation can be
exploited to identify normal and malignant colon tissues. There-
fore, geometric features have been proposed with an intention to
capture geometrical differences between the structure of epithelial
cells and lumen in normal and malignant colon tissues.

The calculation of geometric features is a three step process. In
the first step, elliptic objects (epithelial cells and lumen) are
detected in colon biopsy images. In the second step, the detected
objects are divided into different categories. In the third step, the
information about the size and spatial distribution of these objects
is exploited to calculate geometric features. These steps are
explained in the following text.

3.2.4.1. Object detection. The first step is to locate elliptic objects in
colon biopsy images. Since epithelial cells and lumen belong to
white cluster, therefore, elliptic objects are detected only in the
white cluster of colon biopsy images. A novel algorithm has been
proposed for this purpose, which is shown in Fig. 7.

In the proposed algorithm, connected components are generated
in white cluster of colon biopsy images. Smaller components, which
have arisen due to blur in colon biopsy images and have area smaller
than component area threshold (CAT), are excluded from further
experimentation. Later, each connected component is processed
individually, and elliptic objects are found in the component.

The process of searching elliptic objects in a single component
is shown in the right half of Fig. 7. Initially, four patterns of ellipses
i.e. horizontal (01), vertical (901), diagonal (451), and off-diagonal
(1351) as shown in Fig. 8 are generated starting with maximum
values of semi-major (SMJA) and semi-minor axes (SMIA).

Generated ellipses are in fact matrices, and their size depends
upon length of semi-major and semi-minor axes. For example, for
5 units’ long semi-major axis and 3 units’ long semi-minor axis,
horizontal, vertical, diagonal and off-diagonal ellipses are matrices
of size 11�7, 7�11, 11�11, and 11�11, respectively. The pixels
lying inside ellipse have value ‘1’, whereas outer pixels have value
‘0’ as demonstrated in Fig. 8.

The four generated ellipses are found in each connected
component of a cluster. For the reason, system traverses pixels of
the connected component one at a time, and extracts four regions

Fig. 5. The process of selecting discerning features from SIFT features.

Fig. 6. Histopathological images of (a) normal and (b) malignant colon tissue.

Single component processingWhite cluster processing

Connected component generation

Smaller component removal

Ellipse generation
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Exit
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Yes

Process connected components
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Fig. 7. The process of detecting elliptic shape based epithelial cells in white cluster
of colon biopsy images.
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of the same size as horizontal, vertical, diagonal and off-diagonal
ellipses around the pixel. The pixel values of horizontal, vertical,
diagonal, and off-diagonal windows are compared with respective
pixel values of the horizontal (01), vertical (901), diagonal (451),
and off-diagonal (1351) ellipses. If all the pixels having value '1' in
an ellipse are also '1' in the extracted window, an ellipse of that
particular orientation is supposed to exist at the pixel. Once the
system finishes traversing all the pixels of a connected component,
the object detection process is repeated with the remaining pixels
(which have not been assigned to any elliptic object) of the
component by decrementing the values of SMJA and SMIA by
one unit. The process is continued for the same connected
component provided there are some unassigned pixels, and the
SMJA and SMIA have not reached minimum bounds. Otherwise,
the process is started for the next connected component of the
cluster in the same fashion. Fig. 9 demonstrates the elliptic objects
detected in the white cluster of a colon biopsy image.

The blur or noise in colon biopsy images may disturb the
functioning of K-Means, and some inner pixels of epithelial cells
may be 0, thereby leading to not exact but almost elliptic shapes in
the clusters. Furthermore, the ellipse searching process in four
orientations covers most of the ellipses, but there may be some
ellipses which are slightly tilted from the four defined orienta-
tions. Therefore, a concept of membership function has been
introduced in the proposed HFS-CC technique in order to find
nearly elliptic shape based epithelial cells and the epithelial cells
tilted from four standard orientations. The membership function
defines the percentage of pixels, which have the same value in

generated ellipse and the extracted window. The optimal value of
membership, found through experimentation, is 95%. Fig. 10
demonstrates membership function. In Fig. 10(a), there is a
horizontal ellipse that needs to be found in the image patches
(b) and (c). A full match has been found in the pattern given in
Fig. 10(b). Circled numbers in Fig. 10(b) represent those image
pixels which have value 1, but they do not participate in matching
process because they lie outside the boundary of generated ellipse.
A partial match has been found in Fig. 10(c). It shows nearly elliptic
shape where two circled numbers inside ellipse are 0, however
membership function helps detecting such ellipses.

3.2.4.2. Object categorization. The detected objects are further
divided into two categories depending upon object area
threshold (OAT). The largest object, which is lumen in case of
normal images, and is either lumen or a larger part of scattered
lumen in case of malignant images, is not divided into any of the
categories. The objects having size larger than OAT belong to one
category (object type-1), whereas, objects having size smaller than
OAT belong to second category (object type-2). Fig. 11(a) shows the
categorization of objects into two object types. The objects having
size greater than OAT are in yellow, and the objects having size
smaller than OAT are in blue.

3.2.4.3. Calculation of geometric features. Geometric features are
computed based on the information about size and spatial
distribution of the detected objects. These features include:

Fig. 8. Horizontal, vertical, and diagonal ellipses (semi-major axis¼5, semi-minor axis¼3).

Fig. 9. Ellipses detected in white cluster of a colon biopsy image: (a) colon biopsy image, (b) white cluster, (c) detected elliptic objects.
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1. Object size uniformity (OSU): OSU measures the uniformity in
the sizes of objects both at the local and global level. The local
features are called local object size uniformity (LOSU), and
global features are called global object size uniformity (GOSU).
Local object size uniformity: In order to calculate LOSU
features, a circular window is iterated on each image pixel,
and standard deviation of areas of both the object types lying
within the window is separately calculated. For instance, in
window 2 in Fig. 12(a), there are 2 objects of object type 1, and
4 objects of object type 2. The LOSU features are computed by
calculating the standard deviation of areas for the 2 and
4 objects, respectively, for object type 1 and 2. Since both the
object types have areas of different scales, therefore, LOSU
features are normalized by dividing standard deviation of areas
with respective mean for each particular object type. Two
features per pixel are computed this way. The LOSU features
will be zero for pixels, which have either no object or only one
object in a circular window around them, therefore, these
pixels do not contribute in the calculation of geometric fea-
tures. This scenario is shown in window 1 of Fig. 12(a). In the
end, we do average the non-zero values of features to compute
two LOSU features per image.
Since the detected objects have almost the same area in normal
colon biopsy images, therefore, the value of LOSU features will
be near to zero for these images. On the other hand, since the
detected objects greatly differ in terms of area in malignant
colon biopsy images, therefore, LOSU features will have larger
values for these images. These features are calculated using
smaller and larger window of radii RS and RL, respectively, and
are named as LOSU1 and LOSU2 for smaller window, and LOSU3

and LOSU4 for larger window, respectively.
Global object size uniformity: In order to calculate the GOSU
features, standard deviation of the area of all the detected
objects for a particular object type is calculated. This measure
will also be small for normal colon biopsy images, and vice
versa due to more uniformity in the detected objects of normal
colon biopsy image. These features are named as GOSU1 and
GOSU2.

2. Object spatial distribution uniformity (OSDU): OSDU feature
measures the uniformity in the spatial distribution of detected
objects. It is a measure of the magnitude of sum of position
vectors for all the objects other than lumen. The position
vectors are calculated with reference to the centre of the lumen
(largest detected object). The process of computing OSDU
features from a colon biopsy image is shown in Fig. 12(b). The
value of OSDU feature will be near to zero for normal colon
biopsy images since the detected objects are uniformly dis-
tributed in space around the lumen. On the other hand, OSDU
feature will have larger values for malignant colon biopsy
images since the detected objects do not follow any standard
spatial distribution. The OSDU feature is not calculated at the
local level since the objects do not have any regular orientation
at the local level.

Eq. (7) depicts composition of geometric feature vector g.

g ¼ ½LOSU1 LOSU2 LOSU3 LOSU4 GOSU1 GOSU2 OSDU� ð7Þ

The optimal values of several parameter such as RS, RL,
membership function, maximum and minimum bounds for SMJA
and SMIA, OAT, and CAT are calculated. The process of calculating
these values is given in explained in Section 5.3.2.

3.2.5. Elliptic Fourier descriptors
Lumen and epithelial cells have elliptic shape, therefore, it is

speculated that elliptic Fourier descriptors (EFDs) of these con-
stituents will help in discriminating normal and malignant colon
tissues. EFDs were initially introduced in 1982 by Kuhl et al. for
classification of several solid objects such as windmill, tank, etc.
[38]. However, later on EFDs have been extensively used in pattern
recognition [39,40].

The computation of EFD features is a two step process. In the
first step, elliptic objects are detected in the white cluster of colon
biopsy images as already discussed in Section 3.2.4.1. In the second
step, elliptic objects are sorted in descending order based on their

Fig. 10. (a) Simulated horizontal ellispe, (b) image pattern (full pattern match), and (c) image pattern (partial match 95.6%).

Fig. 11. Object categorization into two object types based on OAT.
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area, and EFDs of the top-most E objects are calculated up to the
desired harmonic level H. Selection of optimal values for E and H is
explained in Section 5.3.2. The process of extraction of EFDs is
elaborated in Fig. 13.

EFDs are based on chain codes, which approximate the shape of
a closed contour by a sequence of eight standardized line seg-
ments, and are invariant to dilation, translation, rotation and
starting point of a contour. EFDs of a closed contour comprise x
and y-projection of its chain codes. H harmonic levels are used for
extraction of EFDs, and there are four Fourier coefficients i.e. a, b, c
and d against each harmonic level. Eq. (8) presents elliptic Fourier
descriptors for E elliptic primitives.

ai ¼ ½a1 a2 a3:::aH �Ti where i¼ 1;2;3; :::; E

bi ¼ ½b1 b2 b3:::bH�Ti
ci ¼ ½c1 c2 c3:::cH �Ti
di ¼ ½d1 d2 d3::: dH�Ti

ð8Þ

where ai,bi, ci, and di vectors contain a, b, c and d Fourier
coefficients of ith primitive upto harmonic level H. ai,bi, ci, and
di vectors are averaged to form a, b, cand d average vectors.

a ¼ 1
E

XE
i ¼ 1

ai; b ¼ 1
E

XE
i ¼ 1

bi; c ¼ 1
E

XE
i ¼ 1

ci; d ¼ 1
E

XE
i ¼ 1

di ð9Þ

Average vectors are then combined to form final elliptic feature
vector e.

e¼ ½aTb
T
cTd

T �T ð10Þ

3.3. Feature concatenation

Individual features are combined to make a hybrid feature
vector. The features are aligned in sequence as presented in Fig. 14.
Upper indices are for individual features, whereas lower indices
are for hybrid features. Hybrid feature vector has 244 dimensions.

3.4. Training/testing data formulation

In this work, Jackknife 10-fold cross-validation technique has
been employed for training/testing data formulation and para-
meter optimization. It is a commonly practiced technique that has
been successfully used in the past to validate the accuracy of
prediction. In 10-fold Jackknife test, data are divided into 10 folds.
9 folds participate in training, and the classes of the samples
belonging to the remaining fold are predicted based on the
training performed on 9 folds. The test samples in the test fold
are purely unseen for the trained model. This sampling process is
repeated 10 times and the class of each sample is predicted.
Finally, the predicted labels of the unseen test samples are used to
determine classification accuracy. The Jack-knife process is
repeated for each combination of system's parameters, and classi-
fication performance has been reported for the sample that leads
to maximum classification accuracy on the unseen test data. Fig. 15
presents Jackknife 10-fold cross-validation process for the calcula-
tion of classification performance of morphological feature vector
using linear SVM. There are two parameters involved in this task;
one is the area threshold of morphological features (T), and second
is the constraint violation cost (c) of linear SVM. The parameters
have been varied in their potential ranges, and Jack-knife process
is repeated for each combination. The classification accuracy on
unseen test data is measured for each combination of parameter
values, and the best achieved classification accuracy has been
reported in Section 5.

Fig. 13. EFDs extraction.
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Fig. 14. Developing a hybrid feature vector by combining individual feature vectors.

Fig. 12. The process of computing geometric features: (a) OSU features and (b) OSDU features.
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3.5. Classification

In recent times, SVM classifier has received noticeable attention
for attaining higher classification success. SVM classifier is con-
sidered a better performer compared to other classifiers. It has
been quite successfully used in different application areas of
medical diagnosis [41–43]. In the training phase of SVM, it maps
non-separable data to a high dimensional space where it becomes
linearly separable. In high dimensional space, SVM creates a
partition surface between data of two classes while trying to
maximize the margin of separation between classes. Decision
surface divides total feature space into two sub-spaces where
each sub-space belongs to single class. In the testing phase, test
data is mapped to the space and labels are assigned to the images
depending upon the sub-space in which their features lie. Linear,
RBF and Sigmoid kernels have been used for classification, and
classification accuracy is evaluated using 10-fold cross-validation.

4. Performance evaluation measures

In our experiments, we provide visual results obtained by the
algorithms i.e. labels assigned to the samples during testing.
Further, we quantitatively evaluate the results using well-known
performance metrics such as accuracy, sensitivity, specificity,
Matthews's correlation coefficient (MCC), F-score and receiver
operating characteristics (ROC) curves. The calculation of para-
meters involves true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). True negative and true positive are
the number of correctly classified negative and positive samples,
whereas, false negative and false positive are the number of
positive and negative samples, which are incorrectly classified.

4.1. Accuracy

Accuracy is a measure of overall effectiveness/usefulness of the
classification scheme. It can be calculated using equation given
below.

Accuracy¼ TPþTN
TPþFPþTNþFN

� 100 ð11Þ

4.2. Sensitivity

Sensitivity is used to measure the ability of a classifier to
recognize patterns of positive class. It can be obtained using the
following equation.

Sensitivity¼ TP
TPþFN

ð12Þ

4.3. Specificity

Specificity is calculated to measure the ability of a classifier to
recognize patterns of negative class. The following equation is
used to calculate specificity.

Specif icity¼ TN
TNþFP

ð13Þ

4.4. Matthews correlation coefficient

MCC serves as a measure of classification in binary class
problems. Its value ranges from �1 to þ1. þ1 means classifier
always predicts a right label, whereas �1 means classifier always
commits a mistake. However, 0 means random prediction. MCC
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Fig. 15. Jack-knife cross-validation for determining classification capability of morphological features for c¼2 and T¼75. The figure shows Jack-knife process for linear SVM.
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can be calculated using the following formula.

MCC ¼ TP � TN�FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððTPþFNÞðTPþFPÞðTNþFNÞðTNþFPÞÞ

p ð14Þ

4.5. F-score

F-score makes use of precision and recall to calculate accuracy
of classification.

Precision ¼ TP
TPþFP

; Recall¼ TP
TPþFN

The F-score can be calculated by using Eq. (15). It is weighted
average of precision and recall values. Its value ranges between
0 and 1, where 0 is the worst possible score and 1 is the best
possible.

Fscore¼ 2� Precision� Recall
PrecisionþRecall

ð15Þ

4.6. ROC curves

An ROC curve is a standard way for graphical representation of
the classification performance of a system [44]. It characterizes the
system over its entire operating range, and is created by plotting
true positive rate (TPR) against false positive rate (FPR). TPR
represents the number of correct positive cases divided by the
total number of positive cases. FPR, on the other hand, is the
number of negative cases predicted as positive cases divided by
the total number of negative cases.

5. Results and discussions

The proposed technique has been tested to classify colon
biopsy images into normal and malignant samples. The proposed
and traditional features are extracted from colon biopsy images,
and are combined to be used in the classification process. All of the
computations have been performed on Intel Core i7 PC.

5.1. Dataset

Our dataset comprises 68 colon biopsy samples taken from
randomly selected patients of Rawalpindi Medical College (RMC),
Pakistan. Samples comprise 5–6 mm thick tissue section, stained
with H&E (Hematoxylin & Eosin). Imaging equipment was pro-
vided by PAEC General Hospital, Islamabad. The resolution and
magnification factors of microscope were set to 600�800 and
10� , respectively. A dataset of 174 RGB images has been acquired
from the samples. In order to eliminate the risk of inter-observer
variability in the diagnosis of colon biopsy slides, ground truth
labels have been assigned to the images by four classified histo-
pathologists, namely, Dr. Imtiaz Qureshi (RMC), Dr. Rahat Abbas
(RMC), Brig. Shoaib Nayyar Hashmi (Armed Forces Institute of
Pathology, Rawalpindi), Prof. Dr. Anwar-ul-Haq (Azad Jammu and

Kashmir Medical College, Muzaffarabad). Among the 174 images,
the pathologists have perfect agreement for 170 images. For the
controversial four images, there exists 75% agreement i.e. three out
of the four pathologists have assigned the same labels. The final
labels have been assigned to the images based on majority voting.
The Kappa statistic has also been calculated in order to determine
variability in the diagnosis of different pathologists. The Kappa
value for the overall dataset is 0.9768, which shows good agree-
ment between the diagnosis of different pathologists in case of
this dataset. The confidentiality of the patients has been sustained
right through this research work. The college has provided the
details about gender and age of the patients only. The information
about the age and gender of patients, and categorization of images
into multiple classes is summarized in Table 4.

5.2. Experimental setup

Experimentation starts with the selection of appropriate values
of parameters for different feature extraction strategies. The
selection of optimal values has been discussed in Section 5.3.
The optimal values obtained this way are used in subsequent
sections. Sections 5.4 and 5.5, respectively, analyze the perfor-
mance of proposed individual and hybrid features. Three variants
of SVM classifier (linear, RBF, Sigmoid) have been employed to
classify given feature set into normal and malignant classes.
Jackknife 10-fold cross validation has been used, and data has
been scaled in the range 0–1 prior to classification. The classifica-
tion accuracies as already described in Section 3.4 have been
determined based on the labels of the unseen test samples (test
folds) in different iterations. Section 5.6 describes the CPU time
involved in feature extraction and classification of different feature
extraction strategies.

The experiments reported in Sections 5.3–5.6 have been
performed by applying 10-fold Jack-Knife on complete dataset.
Later, the dataset has been divided into separate training and test
data, and the same experiments have been performed. In this
context, the performance of individual and hybrid feature sets has
been summarized in Section 5.7. Section 5.8 provides a perfor-
mance comparison of the proposed technique with existing colon
biopsy image based classification techniques.

5.3. Selection of optimal values for system parameters

The performance of the proposed HFS-CC system depends on
several parameters, which need to be tuned for optimal perfor-
mance. In the subsequent text, analysis of optimal values of SVM
models and feature selection methods has been presented in
detail. Only RBF SVM has been used, and the parameter values
have been obtained by taking classification accuracy into account.
These optimal values have been used in the experimental results
shown in Sections 5.4–5.6.

Table 4
Statistics for the dataset.

Parameters Values

Number of images 174
Distribution of images 92 malignant, 82 normal
Grades of malignant images 23 poor-, 44 moderate-, and 25 well-differentiable
Age of patients 42–68, Mean¼57.11, Standard deviation¼6.35
Age of female patients 43–63
Age of male patients 42–68
Kappa statistic for inter-observer variability 0.9768
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5.3.1. SVM models
The performance of SVM classifiers depends on several para-

meters. In this research study, grid search method [45] has been
employed for selection of optimal parameter values by carefully
setting grid range and step size. Linear kernel involves only one
parameter (‘c’ soft margin constant), which is the constraint
violation cost associated with the data point occurring on the
wrong side of the decision surface. The parameter γ is involved in
RBF and sigmoid kernels. Its optimal value has been obtained by
adjusting the grid range of γ ¼ ½0:001; :::;0:099� with Δγ ¼ 0:002for
both the kernels. A parameter r is specific to sigmoid kernel only,
and its default value is used.

Similarly, there is another parameter called number of folds,
which is actually the parameter of Jackknife cross-validation, but
may affect the performance of SVM classifier. Therefore, its optimal
value must be selected prior to classification. In this particular
research study, number of folds has been varied in the range 5, 10,
…,30, and the results are shown in Fig. 16 in terms of classification
accuracy and computational time requirements of RBF classifier for
all feature extraction techniques. Fig. 16(a) demonstrates that classi-
fication accuracy slightly varies by varying folds but the variation is
negligible. On the other hand, the classification time of RBF classifier
as shown in Fig. 16(b) increases with an increase in number of
folds. Therefore, we have opted 10-fold cross-validation in this
research work.

5.3.2. Feature extraction strategies
There are several parameters involved in feature extraction,

and it is quite essential to select appropriate values for these
parameters prior to classification. An experimental process has
been adopted to find these values. This section explains the
selection of optimal values of parameters for individual feature
categories one by one.

SIFT features: The performance of SIFT features significantly
depends upon number of SIFT points (S). Therefore, we have tried
to get an insight into the relationship between S and classification
accuracy. Fig. 17(a) shows the results. Initially, classification
accuracy shows a transitory behavior. But, a uniform value of
accuracy has been observed beyond 250 SIFT points. Therefore,
250 SIFT points have been used for classification.

Morphological features: Morphological features are extracted
from connected components having size greater than an area
threshold (T). The optimal value of T has been obtained by varying
it from 25 to 125, and by extracting corresponding features.
Classification accuracy for each feature set is given in Fig. 17(b).
Classification accuracy increases with an increase in the value of T,
but shows a stable behavior after T¼100. Therefore, component
area threshold of 100 is used in this particular research study.

Elliptic Fourier descriptors: There are two parameters
involved in the extraction of EFDs: number of elliptic primitives
of white cluster (E), and harmonics level (H). In order to find
optimal values of these parameters, E and H have been varied in
the ranges E¼5, 10,…, 25 and H¼4, 8,…, 20. Corresponding results
are shown in Fig. 17(c). Results demonstrate that for fixed number
of elliptic primitives, accuracy first slightly increases and then
gradually decreases with increase in harmonics level. On the other
hand, accuracy increases with increase in number of elliptic
primitives while keeping fixed harmonic level. Therefore, one
can conclude that smaller values of H and higher values of E are
a better choice. Highest classification accuracy has been observed
for E¼25 and H¼8, therefore, this combination of parameters has
been used in further experimentation.

Geometric features: The performance of geometric features
depends upon several parameters, namely, OAT, CAT, SMJA, SMIA,
RL, RS, and membership function. As there are many parameters,
therefore, it is computationally expensive to explore each combi-
nation of values of these parameters to determine an optimal
combination for the given dataset. Hence, the optimal values of
these parameters have been found by employing genetic algo-
rithm (GA). GA has also been used in the past for optimization of
systems' parameters [46,47]. Table 5 shows the optimal values of
these parameters found through GA. The optimal values of SMJA
and SMIA range from 9 to 80, and from 5 to 28, respectively. For
each value of SMJA i.e. from 9 to 80, the SMIA has been varied from
its lower bound up to that value of SMJA. For instance, for
SMJA¼10, the SMIA has been varied from 5 to 10. The ellipse
detection algorithm has been iterated for each of these combina-
tions of SMJA and SMIA.

5.4. Performance analysis of individual feature extraction strategies

In the first set of experiments, individual features have been
used for classification, and performance evaluation parameters
have been measured. Table 6 demonstrates corresponding results.

A reasonable performance has been observed in case of every
feature extraction strategy. However, close analysis reveals that
the proposed geometric features perform better in terms of most
of the performance metrics regardless of the choice of SVM kernel.
The proposed geometric features capture true morphology/geo-
metry of constituents of colon tissues, therefore, they perform the
best. Similarly, EFDs features, which are based on the proposed
geometric features, have also shown good classification results.

5.5. Performance analysis of hybrid feature extraction strategies

In the second set of experiments, a combinational strategy
has been adopted. Manifold combinations of feature extraction
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categories, each comprising two feature types, has been used for
classification. Table 7 demonstrates the corresponding perfor-
mance evaluation measures. Like the results of feature extraction
strategies shown in Table 6, RBF kernel performs better for hybrid
features as well. Therefore, Table 7 shows the performance of
hybrid features achieved using RBF kernel only.

Geometric and texture features provide handsome level of
accuracy no matter whether they are used separately or in combina-
tion with other feature types. Results in Table 6 and Table 7 enforce
the conclusion, wherein we see that individually geometric and
texture features yield maximum accuracy of 92.53% and 88.45%,
respectively. However, accuracy further increases up to 94.63% when
these features are combined.

Finally, we combine all the feature types to make a hybrid
feature set, and achieve 96.55%, 98.28% and 98.05% classification
accuracy for linear, RBF and Sigmoid kernels, respectively. The
values of performance evaluation measures for hybrid feature
space are given in Table 8.

Proposed technique produces quite promising results regard-
less of the choice of SVM kernel. This is mainly because of the
diversity in the feature set encompassed by combining different
feature extraction strategies. Each feature extraction strategy
captures unique features from the dataset and once these features

are combined; they reinforce each other, and increase accuracy
upto 98.28%. An increase of 5.75% and 3.65% in accuracy is
observed when compared against best performance achieved by
individual feature extraction strategies and a combination of two
feature extraction strategies.

The performance of the feature subsets comprising three and four
feature types has also been investigated. Since, there are five
individual feature extraction techniques, therefore, there are ten
hybrid feature sets comprising three feature types, and five hybrid
feature sets comprising four feature types. The performance of these
features is superior compared to the performance of feature sets
comprising two feature types, and is smaller compared to the
performance of the hybrid set comprising all feature types. The best
performance for the feature sets comprising three and four features
types has been reported for “MorphologicþGeometricþTexture”
and “MorphologicþGeometricþTextureþEFDs” to be 95.10% and
95.18%, respectively.

The performance of the proposed HFS-CC technique has also
been analyzed in terms of the ROC curve. In this context, ROC
curves of the proposed geometric features, other individual feature
types, and the hybrid feature set comprising all feature types have
been drawn. The ROC curves are shown in Fig. 18, which demon-
strates better ROC curve of geometric feature compared to other
feature extraction strategies. Secondly, the hybrid feature set
comprising all feature types has the best ROC curve.

A few samples correctly classified by the proposed HFS-CC
technique are shown in Fig. 19. The results show that the proposed
technique has been able to correctly identify malignant images of
poorly-, moderately-, and well-differentiable cancer grades.

There are a few images, which are incorrectly classified by the
proposed technique. Therefore, we have strived to figure out the
possible reasons of misclassification. A few normal and malignant
samples misclassified by the proposed scheme are given in Fig. 20.
Close observation reveals that normal images, which are misclas-
sified, deviate from the standard geometry of normal colon tissues.

Fig. 17. Classification accuracy for different values of (a) SIFT points ‘S’, (b) area threshold ‘T’, (b), and (c) ‘E’ and ‘H’.

Table 5
The optimal values of parameters involved in the
extraction of proposed geometric features.

System parameter Optimal values

SMJA [9,80]
SMIA [5,28]
RL 60
RS 40
CAT 350
OAT 1333
Membership 95
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These images actually depict pre-cancerous stage in which defor-
mation process is about to begin. Similarly, a malignant image
which is misclassified by the proposed HFS-CC technique is shown
in Fig 20(a3). This image lies at the boundary between normal and
malignant tissues. Therefore, system finds difficulty in accurately
identifying this image as malignant one.

5.6. Computational time requirements of the proposed HFS-CC
technique

It is always desirable to measure the effectiveness of a pro-
posed technique in terms of its CPU time requirement. In this
context, we have calculated the CPU time taken by different
feature extraction strategies, and also the time taken by different
classifiers for classification of individual and hybrid features. The
sizes of the individual and hybrid feature sets, and the feature
extraction time for each feature type are given in Fig. 21(a) and (b),
respectively. The feature extraction time of hybrid feature set is
mere addition of the extraction time of individual feature sets.

Fig. 21(b) demonstrates that the proposed HFS-CC technique is
computationally tractable, because the extraction of various fea-
ture types from an image takes quite small time. Even the
extraction of hybrid feature set, which is the sum of individual
feature extraction times, is only 12.08 s. Further, the extraction of
geometric features is time-consuming compared to other feature
types. Reason behind the fact is that geometric features are based
on objects. These objects are located by searching multiple
simulated ellipses in the whole image, thereby increasing the
feature extraction time. But the increase in computational time
may be justified by the better performance of geometric features
compared to other feature types.

Table 7
SVM classification for combination of feature extraction strategies using RBF kernel of SVM.

Features Accuracy Sensitivity Specificity MCC F-Score

EFDs-Morphological 88.5870.98 0.8870.01 0.9070.01 0.8070.02 0.8970.01
EFDs-Geometric 92.8871.11 0.8970.02 0.9570.01 0.8570.03 0.9270.01
EFDs-Texture 89.8270.67 0.8970.01 0.9170.01 0.8070.01 0.8970.01
EFDs-SIFT 83.7971.40 0.8970.02 0.7970.02 0.6870.03 0.8470.01
Morphological-Geometric 94.5770.63 0.9270.01 0.9070.01 0.9070.01 0.9370.01
Morphological-Texture 92.3670.88 0.9170.01 0.9470.01 0.8570.01 0.9370.01
Morphological-SIFT 91.2370.33 0.9070.01 0.9270.01 0.8270.01 0.9170.01
Geometric-Texture 94.6370.82 0.9270.01 0.9570.01 0.9070.02 0.9270.01
Geometric-SIFT 93.3970.68 0.9370.01 0.9470.01 0.8770.01 0.9370.01
Texture-SIFT 90.8070.77 0.8570.02 0.9670.01 0.8270.01 0.9070.01

Table 8
SVM classification for hybrid feature space.

SVM kernels Accuracy Sensitivity Specificity MCC F-Score

Linear 96.5570.25 0.9770.01 0.9670.01 0.9370.01 0.9770.01
Sigmoid 98.0570.57 0.9770.01 0.9870.01 0.9670.01 0.9870.01
RBF 98.2870.36 0.9970.01 0.9870.02 0.9770.01 0.9870.01
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Fig. 18. ROC curves for individual and hybrid feature sets.

Table 6
SVM classification for individual feature extraction strategies.

Features Accuracy Sensitivity Specificity MCC F-Score

Linear SVM
EFDs 81.0371.32 0.8070.03 0.8270.03 0.6270.03 0.8270.01
Morphological 85.6370.36 0.9170.01 0.7970.01 0.7170.03 0.8770.02
Geometric 91.3770.23 0.8870.01 0.9570.01 0.8370.02 0.9270.01
Texture 86.2070.87 0.8770.01 0.8570.01 0.7270.02 0.8770.01
SIFT 78.7472.62 0.7870.04 0.7970.02 0.5770.05 0.8070.03

Sigmoid SVM
EFDs 82.1871.54 0.8070.02 0.8470.02 0.6470.03 0.8270.02
Morphological 86.7870.78 0.9270.01 0.8070.01 0.7470.02 0.8870.01
Geometric 91.9570.39 0.8870.01 0.9670.02 0.8470.02 0.9270.01
Texture 87.9370.87 0.8870.01 0.8870.01 0.7670.02 0.8870.01
SIFT 81.0370.77 0.8270.02 0.8070.02 0.6270.03 0.8270.03

RBF SVM
EFDs 85.0671.09 0.8570.03 0.8570.02 0.7070.02 0.8670.01
Morphological 88.5070.78 0.9270.02 0.8470.02 0.7770.01 0.8970.01
Geometric 92.5370.15 0.8770.01 0.9970.01 0.8670.02 0.9270.01
Texture 88.4572.19 0.8470.02 0.9270.02 0.7770.02 0.8770.01
SIFT 82.7672.19 0.8670.01 0.7970.01 0.6570.01 0.8470.03
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Fig. 22 demonstrates the classification time of different feature
sets taken by various SVM classifiers. We observe from the results
that classification time depends upon the size of the feature vector.
Hence, the classification of hybrid feature set takes considerably
large time compared to individual feature sets.

5.7. Performance of the proposed HFS-CC technique on separate
training and test data

This section separately investigates the training and testing
performance of the proposed system. In this context, overall

dataset has been randomly divided into training and test sets.
The training set consists of 70% of the overall dataset, which is 122
images (56 normal, and 66 malignant). The test set comprises 30%
of the dataset, which is 56 images (26 normal, and 26 malignant).
The images in the test data are not used in parameter estimati-
on at all, and are totally unseen for the model trained on the
training data.

In the training phase, the optimal values of system's para-
meters are determined through 10-fold cross-validation, and a
model is trained on these parameters. The proposed/used feature
selection methodologies have some parameters. Additionally,

Normal Normal Malignant 
(well differentiable)

Malignant
(well differentiable)

Malignant
(moderately differentiable)

Malignant
(moderately differentiable)

Malignant 
(poorly differentiable)

Malignant 
(poorly differentiable)

Fig. 19. Examples of the normal, poorly-, moderately-, and well differentiable malignant colon tissues, which are correctly classified by the proposed HFS-CC system.

Fig. 20. Misclassified (a1�a2) normal and (a3) well-differentiated malignant image by the proposed HFS-CC using RBF SVM.
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there are some parameters of linear, RBF and sigmoid kernels of
SVM. In the training phase, we consider all possible combinations
of these parameters as candidate parameter sets. Using 10-fold
cross validation on the training set, we select the optimal values of
these parameters independently for different feature selection
methodologies.

In the testing phase, the test data is applied on the model
obtained in the training phase, and classes of the samples are
determined. The test data is totally unseen for the model trained
during training. The training and test accuracy for different feature
selection methodologies is given in Table 9.

The results in Table 9 are almost similar to those obtained in
Section 5.4. The results show that all the feature types yield good
classification results, but the proposed geometric features outclass
other feature types, and yield better classification.

The training and testing performance for hybrid feature set
comprising all feature types is given in Table 10. The results show
that the proposed hybrid feature set has promising classification
results. The classification accuracies of 99.18% and 98.07% in the
training and test phases show that the proposed hybrid feature set
discriminates normal and malignant colon tissues quite effectively.

5.8. Performance comparison of HFS-CC with existing schemes

The performance of the proposed HFS-CC system has been
compared with previously proposed approaches of colon biopsy

image classification. In this context, six techniques [11–16] have
been selected from the contemporary literature for comparison.
We have implemented these techniques in Matlab, and evaluated
classification performance measures on the dataset described in
Section 5.1. In order to obtain a fair comparison with HFS-CC, we
have used optimal values of the parameters used in these
techniques.

Table 11 reveals better performance of HFS-CC over others in
terms of most of the performance evaluation measures. This is
because of the fact that some of the previous techniques [11–14]
take general image features for classification such as entropy,
correlation, and inverse difference moment. These features repre-
sent general image texture but do not capture any problem related
information such as information about tissue organization. On the
other hand, proposed scheme uses rich hybrid feature vector
wherein each individual feature category captures problem spe-
cific knowledge. When individual feature vectors are combined,
they all reinforce each other and produce quite superior classifica-
tion results. This work also has some advantages over the authors'
previously proposed CBIC technique [15]. In CBIC, a majority voting
based ensemble of three individual SVM classifiers has been
developed for classification. The parameter optimization and the
classification time of ensemble are equal to the sum of the time
consumed by individual classifiers. Furthermore, an overhead of
majority voting also exists in CBIC. On the other hand, only one
classifier (RBF that gives better results) has been used in this work
that not only produces better results on training data and
comparable results on test data, but also consumes one third of
the time compared to CBIC in parameter optimization and classi-
fication. Furthermore, variants of statistical moments and Haralick
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Fig. 22. Classification time of different feature sets by various SVM classifiers.

Table 9
Training and testing performance of linear, RBF and sigmoid SVM kernels for individual feature extraction strategies.

Features Training performance Testing performance

Accuracy Accuracy Sensitivity Specificity MCC F-score

Linear SVM
EFDs 82.79 82.69 0.85 0.81 0.65 0.83
Morphological 85.24 84.61 0.88 0.81 0.69 0.85
Geometric 90.98 90.38 0.88 0.92 0.81 0.90
Texture 86.07 84.61 0.77 0.92 0.70 0.83
SIFT 77.87 76.92 0.96 0.58 0.58 0.81

Sigmoid SVM
EFDs 83.61 82.69 0.92 0.73 0.67 0.84
Morphological 84.43 84.61 0.85 0.85 0.69 0.85
Geometric 91.80 92.30 0.92 0.92 0.85 0.92
Texture 86.89 86.53 0.92 0.81 0.74 0.87
SIFT 83.61 82.69 0.81 0.85 0.65 0.82

RBF SVM
EFDs 86.07 86.54 0.81 0.92 0.74 0.86
Morphological 90.16 88.46 0.85 0.92 0.77 0.88
Geometric 92.62 94.23 0.88 1.00 0.89 0.94
Texture 87.70 88.46 0.96 0.81 0.78 0.89
SIFT 83.61 84.62 0.73 0.96 0.71 0.83

Table 10
Training and testing performance of linear, RBF and sigmoid SVM kernels for hybrid
feature extraction strategy.

SVM
Kernels

Training
performance

Test performance

Accuracy Accuracy Sensitivity Specificity MCC F-
Score

Linear 96.72 94.23 0.96 0.92 0.88 0.94
Sigmoid 97.54 96.15 0.96 0.96 0.92 0.96
RBF 99.18 98.07 1.00 0.96 0.96 0.98
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features have been used in CBIC. On the other hand, novel geo-
metric features have been proposed for classification of colon
biopsy images in this research work. These features have good
classification results, and may further be improved to produce
more accurate classification results. These features may not only
be helpful for the researchers working in the field of colon cancer,
but also for those working with other cancer types.

6. Conclusion

In this research study, a novel classification technique HFS-CC is
proposed for predicting cancer in colon tissues. In the proposed
scheme, several features such as morphological, texture, EFDs and
SIFT are extracted from colon biopsy images. Further, a novel
feature type is proposed that quantifies the knowledge about the
size and the spatial distribution of various cytological constituents
of colon tissues for developing a feature vector to be used in the
classification. Further, traditional features are combined with the
proposed geometric features to form a hybrid feature vector,
which is then used in different kernels based SVM classification.
Working with colon biopsy images, 99.18% training and 98.07% test
classification precision has been observed. Proposed technique has
also been compared with various existing colon cancer detection
techniques, and a significant increase in classification accuracy has
been observed. Results demonstrate that hybrid and rich feature
space certainly improves the classification performance compared
to the performance achieved by using individual features. This
research study can be extended into multiple directions. First
possibility is to use supervise/unsupervised techniques for assign-
ing quantitative cancer grades to already classified malignant
samples. Second, the proposed scheme can be tested on Immuno
Histochemically stained biopsies to measure its effectiveness.
Third, some valuable color based features can also be extracted
from colon biopsy images.
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