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ABSTRACT: Improved adaptive nonlocal means (IANLM) is a variant

of classical nonlocal means (NLM) denoising method based on
adaptation of its search window size. In this article, an extended

nonlocal means (XNLM) algorithm is proposed by adapting IANLM
to Rician noise in images obtained by magnetic resonance (MR)
imaging modality. Moreover, for improved denoising, a wavelet

coefficient mixing procedure is used in XNLM to mix wavelet sub-
bands of two IANLM-filtered images, which are obtained using dif-

ferent parameters of IANLM. Finally, XNLM includes a novel
parameter-free pixel preselection procedure for improving compu-
tational efficiency of the algorithm. The proposed algorithm is vali-

dated on T1-weighted, T2-weighted and Proton Density (PD)
weighted simulated brain MR images (MRI) at several noise levels.

Optimal values of different parameters of XNLM are obtained for
each type of MRI sequence, and different variants are investigated
to reveal the benefits of different extensions presented in this work.

The proposed XNLM algorithm outperforms several contemporary
denoising algorithms on all the tested MRI sequences, and pre-

serves important pathological information more effectively.
Quantitative and visual results show that XNLM outperforms
several existing denoising techniques, preserves important patho-

logical information more effectively, and is computationally-
efficient. VC 2014 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 24, 293–

305, 2014; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI:

10.1002/ima.22106

Key words: nonlocal means; denoising; brain MRI; Rician noise;

wavelet

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a popular noninvasive and in

vivo nuclear imaging technique, which exposes important biological

structures in the scanned body part. Radiologists infer important

pathological information from the analysis of magnetic resonance

(MR) images of the examined organ. This analysis is automated in

computer-aided diagnosis (CAD) systems to provide a secondary

opinion to the radiologists for taking more confident and reliable

decisions. Moreover, a CAD system expedites the process of diagno-

sis by processing many images simultaneously. However, a CAD

system analyzing MRI may produce incorrect results, as these

images inevitably suffer from thermal noise due to the tradeoff

between their acquisition time and signal to noise ratio. The acquisi-

tion time is practically limited due to physical limitations and patient

comfort. Therefore, the noise should be explicitly removed from

these images using post processing denoising techniques.

Denoising of MRIs imposes special requirements on the denoising

process, since the preservation of features of interest is more impor-

tant than merely generating an image which is visually more pleasing.

Undesirable artifacts introduced in MRIs during the denoising process

may be mistreated as clinically important features. Therefore, robust

methods for MRI denoising are in high demand. These methods

should also explicitly consider the special nature of noise in MRIs

during the denoising process. The noise in magnitude MRIs follows

Rician distribution, which introduces certain bias into these images.

This bias differently affects various regions in images with different

intensity distribution. The denoising method should explicitly remove

this bias of Rician noise to yield optimal performance. For these

reasons, brain MRI denoising is an active area of research these days.

The traditional approaches to image denoising include wavelet

filtering (Donoho 1995; Selesnick 2004; Luisier et al., 2007; Wen

et al., 2013), total variation minimization (Osher et al., 2005;
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Gupta et al., 2013), diffusion filtering (Perona and Malik, 1990;

Gilboa et al., 2004), and local neighborhood based filtering (Tomasi

and Manduchi, 1998). Nonlocal means (NLM) (Buades et al., 2005)

is a relatively recent denoising method, which has been applied to

brain MRI denoising (Coupe et al., 2008; Manjon et al., 2008). It

removes noise from an image while preserving sufficient image

details. The intensity value of a pixel is restored by computing

weighted sum of pixels within a search window around the pixel.

The weights are computed based on Euclidean distance between

intensity values of patches (local neighborhoods) of pixels. Aksam

et al. (2012) applied NLM for brain MRI denoising, and obtained

optimal values of its parameters with the help of a variant of genetic

algorithm. Further, they proposed a variant of classical NLM, namely

improved adaptive nonlocal means (IANLM) algorithm, and applied

it for brain MRI denoising (Iftikhar et al., 2013). The IANLM algo-

rithm makes the search window size adaptive with the help of a

search window adaptation mechanism, and a robust threshold crite-

rion. An alternate spiral window traversal mechanism is also imple-

mented in IANLM, which improves its robustness due to the

characteristic of image smoothness. Iftikhar et al. (2014) proposed an

enhanced nonlocal means (ENLM) algorithm, which adapts the

IANLM algorithm to Rician noise using a bias correction method

(Nicolas et al., 2008). The ENLM algorithm was validated using T1-

weighted and T2-weighted brain MRI data.

Manjon et al. (2008) introduced an unbiased nonlocal means

(UNLM) filter, which removes the bias introduced by Rician noise in

MRIs. It filters the square magnitude MRI instead of the original

image, and subtracts the bias value from intensity value of each pixel

in the restored image. Coupe et al. (2008) proposed an optimized

block-wise NLMs filter for denoising 3D brain MRIs. In the opti-

mized NLMs filter, they presented a 3D implementation of NLM, and

proposed automatic parameter tuning of the filter parameters. They

also adapted the filter to Rician noise in a way similar to UNLM, and

presented a voxel preselection procedure to select suitable set of pix-

els for computing weighted sum in the denoising process. However,

the voxel preselection procedure presented therein requires additional

parameters, which should be assigned appropriate values for a partic-

ular application. Vega et al. (2012) proposed an alternate approach to

computation of similarity weights in the NLM algorithm, and vali-

dated their proposed algorithm on 3D brain MRI data. They suggested

computing the distance between features of patches instead of inten-

sity values of pixels in patches to compute the similarity weights. In

addition to improving the quality of the filtered image, this approach

had the inherent computational advantage, since the number of fea-

tures are usually less in number than number of pixels in patches.

A wavelet sub-band mixing procedure has been proposed in (Szi-

lagyi et al., 2003) for 3D brain MRI denoising, which combines dif-

ferent wavelet sub-bands of over- and under-smoothed images

obtained using NLM filter. Combining different sub-bands in the

wavelet domain exploits information in the low and high frequency

components of images, thereby resulting in better-quality filtered

image. The over- and under-smoothed images are obtained using dif-

ferent size of patch for each image, while keeping all other parame-

ters of NLM the same in both images. Manjon et al. (2010) further

exploited the concept of wavelets sub-band mixing method for deal-

ing with spatially varying noise in MRIs. They made the proposed

filter adaptive to spatially varying noise by incorporating information

about local noise in the image.

Some of other state of the art denoising methods, different from

nonlocal methodology, include patch-based locally optimal Wiener

filtering (PLOW) (Chatterjee and Milanfar, 2012), block matching

and 3D filtering (BM3D) (Dabov et al., 2007) and orthogonal wave-

let transform based on SURE-LET principle (OWT-SURELET)

(Luisier et al., 2007). The PLOW filter, contrary to NLM, exploits

redundancy in both geometrically and photometrically similar

patches. Photometric similarity is measured in a way similar to the

NLM method, whereas the geometrically similar patches are identi-

fied by geometric clustering of image based on local image features.

The BM3D filter groups similar 2D image blocks into 3D data

arrays, and performs a collaborative filtering procedure on these data

arrays to obtain jointly filtered grouped image blocks. These blocks

are then aggregated to obtain the filtered image in which the fine

details shared by grouped blocks are revealed. Finally, OWT-

SURELET is a wavelet-domain method which strives to minimize

the error between the noise-free and restored images in the mean

square sense. The noise-free image is estimated from noisy image

based on Stein’s unbiased risk estimate.

In this work, we have extended our work on IANLM (an adaptive

variant of classical NLM algorithm), and presented an extended non-

local means (XNLM) algorithm. As mentioned previously, IANLM

was adapted to Rician noise in ENLM using a bias correction

method. In XNLM, the IANLM filter has been adapted to Rician

noise using an alternate bias correction method, which results in

improved denoising performance (Manjon et al., 2008). Moreover, a

wavelet coefficients mixing (WCM) procedure has been used in

XNLM to improve the quality of the restored images. The WCM

procedure exploits valuable information from different wavelet sub-

bands of the over- and under-smoothed images, which are obtained

by IANLM filtering using different filter parameters (Coupe et al.,

2008). Further, an automatic parameter-free pixel preselection pro-

cess has been proposed to overcome the computational overhead

incurred due to computation of two filtered images in WCM. The

proposed pixel preselection method is simple to implement, and

automatically adapts to the amount of noise in the input image. It

considerably improves the computational efficiency of XNLM.

Finally, optimal values of several parameters of XNLM have been

obtained for application to brain MRI. Different variants of the pro-

posed XNLM algorithm have been validated on simulated T1-, T2-,

and PD-weighted brain MRIs. These variants test the influence of

various extensions to standard IANLM algorithm, which are pro-

posed in this work. Experimental results reveal that the proposed

algorithm is more robust to noise, and preserves the integrity of path-

ological structures in the restored images.

The rest of the article is organized as follows. Section II describes

in detail each component of the proposed technique and the data set

used for validating the proposed technique. Detailed results of vari-

ous denoising experiments and relevant discussion are presented in

Section III. Finally, the research is concluded in Section IV.

II. MATERIALS AND METHODS

A. The Proposed Extended Nonlocal Means
Algorithm. The proposed XNLM algorithm comprises various

components, which are listed as follows:

1. IANLM filtering (Section II.A.1).

2. Pixel preselection (Section II.A.2).

3. Adaptation to Ricain noise (Section II.A.3).

4. Wavelets coefficient mixing (WCM) (Section II.A.4).

5. Optimization of different parameters of the algorithm

(Section II.A.5).

These components should be applied to an input image to obtain

the XNLM-filtered image. Figure 1 shows the XNLM process
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graphically in a flow chart. It should be noted that the pixel preselec-

tion is implemented as an inherent part of IANLM. However, it has

been shown as a separate step in Figure 1 for better demonstration. In

the next steps, the two IANLM-filtered versions of the input image are

obtained using different values of the scaling parameter “k” (see Sec-

tion II.A.5 for discussion on the parameter “k” and Section III.A for

values of “k” used in this work), and adapted to Rician noise. Finally,

the WCM procedure, described in Section II.A.4, is applied on the

two images Io and Iu to obtain the XNLM-filtered image. All the said

components of XNLM are described in detail in the following text.

A.1 Improved Adaptive Nonlocal Means Algorithm. IANLM is

a variant of classical NLM method based on dynamic adaptation of

its search window size. In classical NLM, the search window is trav-

ersed exhaustively to compute the similarity of different patches in

the window with the central patch. The similarity between pixel i
and j is measured by weight wij. The denoising process in NLM is

based on weighted sum of pixel intensity values within the search

window. This is expressed mathematically as follows.

xi5
X
j2Si

wijyj; subject to
X
j2Si

wij51 (1)

where yj represents the jth pixel in the set of pixels (Si) within the

search window of pixel i, and xi represents the NLM-restored value

of pixel i. The term wij is the similarity weight between patches Pi

(patch of pixel i is referred as Pi in the following text) and Pj, and is

computed using the following expression:

wij5
1

Zi
e2

�
kyðPiÞ2yðPjÞk22

�
h2 (2)

where h is the smoothing factor, which controls the tradeoff between

smoothness (noise removal) and detail preservation. The term

jjy(Pi)2y(Pj)jj2 denotes the Euclidian distance between patches Pi

and Pj, where y(Pi) and y(Pj) are the intensity values of pixels in

patches Pi and Pj, respectively. The term Zi is a normalization con-

stant, which makes sure that wij 2 ½0; 1�.
The exhaustive search process within the search window poses

severe computational burden without much performance advantage.

The IANLM algorithm presents an adaptation mechanism to auto-

matically select the search window size for each pixel. The adapta-

tion mechanism is based on number of fit pixels/patches found

within particular search window. A fit pixel implies a pixel for which

the similarity weight is superior to a predefined threshold. Thus,

mathematical formulation of IANLM is given as follows.

x
0

i5
X
j2N�i

wijyj; subject to
X
j2N�i

wij51 (3)

where xi
0 is the restored value of pixel i using IANLM, and N�i � Si is

the set of pixels around pixel i, satisfying the following constraints.

1. Robust threshold criterion: wij >wh, where wh is the thresh-

old on similarity between pixels i and j.
2. Window adaptation test: jN�i j � Nf , where Nf designates

number of fit pixels within the search window.

An alternate implementation of the IANLM algorithm was also

proposed in (Iftikhar et al., 2013). Traditionally, the search window

is traversed in a row/column wise manner such that the pixel on top-

left of the window is processed first. This traversal mechanism is

replaced by a spiral traversal in IANLM, such that the central pixel

is processed first and the search is progressed outward in a region

growing manner. The alternate search traversal mechanism improves

the denoising process due to the inherent smoothness generally pres-

ent in local patches of an image (Iftikhar et al., 2013).

A.2 Pixel Preselection. The window adaptation mechanism pro-

posed in IANLM algorithm not only reduces the computational bur-

den but also improves denoising performance by considering only

the suitable pixels within the search window. However, another com-

putationally expensive task in the nonlocal denoising is the computa-

tion of similarity weighs. The computational burden can be further

reduced by selecting pixels prior to computing actual weights. This

pixel preselection process is also expected to improve the quality of

the restored image by eliminating the irrelevant pixels, which might

deteriorate the performance of IANLM.

In this article, we have proposed a pixel preselection process,

which is simple to implement and requires no additional parameters.

Further, it is adaptable to the amount of noise in the image. The pro-

posed pixel preselection process is expressed as follows.

wij5
1

Zi
e2

�
kyðPi Þ2yðPjÞk22

�
h2 ; if jyi2yj j < r

0; otherwise:

8>><
>>: (4)

where yi and yj correspond to ith and jth pixel of the mean-filtered

input image. The symbol j.j represents the absolute operator, and r is

the standard deviation of noise in the input image. Thus, the pro-

posed preselection process specifies that the similarity weight

between pixel i and j should be computed according to Eq. (2), if the

absolute difference of the corresponding pixels’ values in the mean-

filtered image is less than the standard deviation of noise in the

image. Otherwise, the similarity weight between pixels i and j is sim-

ply set to 0. The intuition behind this criterion is that if the absolute

difference is greater than r, then the patches of pixels i and j are

actually dissimilar and should be excluded from the denoising pro-

cess. The term r is set as threshold to tolerate the effect of noise in

difference computation and adjust the preselection process according

to amount of noise in the image. Thus, the proposed preselection pro-

cedure is free of any additional parameters and is adaptive to the

amount of noise in the image.

Figure 1. Block diagram of the proposed XNLM algorithm. [Color
figure can be viewed in the online issue, which is available at wileyon-
linelibrary.com.]
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A.3 Adaptation to Rician Noise. MRIs usually contain Rician

noise, which is known to be signal dependent. Rician noise exhibits

different behavior in low and high intensity regions, thereby intro-

ducing bias and reducing overall contrast of an image. The value of

Rician bias is generally equal to double the variance of the noise

present in an image (Nowak, 1999). As stated earlier in Section I, the

ENLM algorithm adapts IANLM to Rician bias using a bias correc-

tion method (Nicolas et al., 2008). In this work, we have adapted

IANLM to Rician noise by applying an alternate bias correction

method (Manjon et al., 2008), which is formulated as follows.

x
00

i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIANLMðyiÞÞ222r2

q
(5)

where, yi represents the value of ith noisy pixel, IANLM(yi) repre-

sents the ith pixel value restored by IANLM, the term r2 is the var-

iance of noise in the image, and x
00
i is the restored value after

Figure 2. The proposed WCM procedure. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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applying the bias correction. The bias correction method implies that

the bias value is subtracted from square of the restored value of each

pixel. Experimental results reveal that the alternate bias correction

method results in improved denoising performance (see Section

III.B).

A.4 Wavelet Coefficients Mixing. Wavelet transforms an image

into a different domain, wherein low and high frequency components

of the image are separated into different sub-bands. The conventional

approach in image denoising using wavelet filtering is to suppress

such coefficients in different sub-bands which potentially correspond

to image noise (Donoho, 1995; €Oktem et al., 2002). These coeffi-

cients are determined by either hard thresholding or soft threshold-

ing. In the hard thresholding method, the coefficients below a certain

threshold are eliminated altogether. Conversely, the soft thresholding

method suppresses the coefficients depending of their distance from

the threshold. It can be formulated as follows.

csoft5
sgnðcÞðjc2kjÞ; if c > k

0; if c < k

(
(6)

where c and csoft represent the value of wavelet coefficient before

and after applying the soft thresholding method, and k is the thresh-

old on coefficients, which can be computed using several methods

existing in literature for the purpose (Chang et al., 2000; Fodor and

Kamath, 2003). In general, soft thresholding yields better perform-

ance than hard thresholding.

In this article, we have used a procedure for mixing wavelet coef-

ficients in the wavelet domain for better denoising. The WCM proce-

dure exploits the capability of wavelets to segregate high and low

frequency components of an image. In WCM, two versions of the fil-

tered images, namely over-smoothed (Io) and under-smoothed (Iu)

images, are obtained using different parameters of IANLM. As the

name implies, noise is removed effectively in the over-smoothed

image, but fine structural details may be lost. On the contrary, image

details are preserved in the under-smoothed image, but some noisy

artifacts may still be present. The idea is to mix the coefficients of

low and high frequency components of these images in the wavelet

domain to exploit valuable information in both types of frequency

components.

Wavelet transforms an image into approximation (a), and hori-

zontal (h), vertical (v), and diagonal (d) detail sub-bands at level 1 in

the new domain. Let, the wavelet sub-bands corresponding to Io and

Iu be denoted by w(x,o) and w(x,u), respectively, where x 2 [a, h, v, d]

corresponds to the four sub-bands. The next step in the WCM proce-

dure is to apply the soft thresholding method using minimax thresh-

old (Donoho and Johnstone, 1998) on the coefficients in the detail

sub-bands of Io, that is, w(h,o),w(v,o),and w(d,o). Then, the approxima-

tion sub-band w(a,u) of Iu is combined with the detail sub-bands of Io,

and the image is transformed back into spatial domain. Due to the

combination of sub-bands from the two preliminary filtered images,

Figure 3. Brain MR images in different modalities with increasing level of noise. 1st row: T1-weighted images, 2nd row: T2-weighted images,

and 3rd row: PD-weighted images. 1st column: noise-free images, 2nd–5th columns: noisy images with r 5 7.5, 15, 22.5, and 30, respectively.
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the detail preservation and noise removal characteristics are retained

in the final image.

Figure 2 graphically illustrates the mixing of wavelet coefficients

for a T1-weighted brain MRI. Here, Io and Iu have been decomposed

into four wavelet sub-bands each using the discrete wavelet trans-

form at first level. After soft thresholding and combining different

sub-bands, inverse discrete wavelet transform is applied to obtain the

final image. As shown in Figure 2, the quality of the final image,

quantitatively measured by peak signal to noise ratio (PSNR) is bet-

ter than both preliminary filtered images, that is, Io and Iu.

A.5 Optimal Selection of Parameters. The proposed XNLM

algorithm depends on a few parameters, which should be assigned

suitable values for optimal denoising performance. The algorithm

may suffer if one or more of these parameters are not assigned appro-

priate values for a particular application. The optimal selection of

these parameters has been discussed in detail in the experimental sec-

tion (see Section III.A).The following text briefly describes these

parameters.

Search window size (s) The radius of a squared search window

around a pixel of interest. A value of s 5 5 implies that the dimen-

sions of the search window are (2s11 3 2s11) 5 11 3 11.

Patch size (p) The radius of a squared local neighborhood (patch)

to be used for computation of similarity weights. A value of p 5 2

means the dimensions of the patch are (2p11 3 2p11) 5 5 3 5.

Scaling factor (k) The smoothing parameter (h) in Eq. (2) is

related to the amount of noise in the image according to the equation

h 5 kr, where r represents the amount (standard deviation) of noise,

and k is the scaling factor (Manjon et al., 2008). The standard devia-

tion of noise can be measured from the input image. Thus, it is the

scaling factor that determines the value of smoothing parameter.

Therefore, it must be assigned an appropriate value for a particular

application.

Weight of central pixel (w0) During the process of computing

similarity weights, the weight of the central pixel always evaluates to

1, since both of the patches to be compared are the same. Hence, the

restored value of current pixel is strongly biased toward the original

noisy value. Therefore, the central pixel should be considered a spe-

cial case, and should be assigned an appropriate value for optimal

denoising performance.

Weight threshold (wh) This parameter is exclusively included in

IANLM, and is not part of the traditional NLM algorithm. This

parameter represents a threshold on similarity weights, which is

applied to determine the set of pixels participating in the denoising

process (see Section II.A.1).

Desired number of fit patches (Nf) Similar to wh, this parameter

is also exclusive to IANLM. Its value determines the number of fit

pixels to be searched in a window before the search is trancated (see

Section II.A.1).

B. Proposed Variants of XNLM. In this work, following var-

iants of the proposed XNLM algorithm have been presented for indi-

vidually investigating the influence of different extensions proposed

in XNLM on denoising performance.

� XNLM0 (Nonspiral IANML 1 bias correction) implements

IANLM using conventional row/column wise window traversal.

Moreover, IANLM is adapted to Rician noise as described in

Section II.A.3. The influence of Rician bias correction on

denoising performance can be realized using this variant.

� XNLM1 (Spiral IANLM 1 bias correction) is similar to

XNLM0 except that it implements IANLM with spiral window

traversal as proposed in (Iftikhar et al., 2013).This variant,

when comapred to XNLM0, facilitates the realization of the

performance advantage of sprial implementation over conven-

tional row/column wise traversal.

� XNLM2 (Spiral IANLM 1 bias correction 1 WCM) also

implements the WCM procedure in XNLM1. The improve-

ment induced due to WCM can be realized using this variant.

� XNLM (Spiral IANLM 1 bias correction 1 WCM 1 pixel

preselection) includes all the extensions incorporated to

IANLM in this research work.

C. Data Set. The proposed algorithm has been validated on

simulated brain volumes of various types of MRI scans, namely T1-

weighted, T2-weighted and PD-weighted. The simulated brain vol-

umes have been obtained from BrainWeb (Collins et al., 1998),

which is a freely available online database. These simulated brain

volumes have been generated using an MRI simulator (Kwan et al.,

1996). The thickness of slices in all brain MRI volumes is 1 mm, and

the dimensions are 181 3 217 3 181, in x-, y- and z-axis, respec-

tively. Prior to several denoising experiments, which are presented in

subsequent sections, we extracted the brain tissues from MRI of

complete head so that the reported denoising results are not influ-

enced by nonbrain tissues like fat and skull. The quantitative meas-

ures for different experiments have been reported by averaging the

results over individual slices. To check the robustness of the pro-

posed algorithm to noise, brain MRIs are corrupted by Rician noise

of various intensities. Figure 3 shows a brain MRI slice in T1-

weighted, T2-weighted and PD-weighted modalities, corrupted by

different levels of Rician noise, that is, r 5 7.5, 15, 22.5, and 30,

where r represents the standard deviation of noise in the image.

The denoising step in a medical imaging workflow is critical par-

ticularly when the pathological structures are small in size. In this

context, we have performed experiments on T2-weighted brain

MRIs containing multiple sclerosis (MS) lesions. The T2-weighted

images with MS lesions used in this work are also part of a brain vol-

ume in the BrainWeb database. These images are corrupted with

Rician noise and filtered using the proposed algorithm to show its

capability to preserve small pathological structures.

III. RESULTS AND DISCUSSION

In this section, the proposed algorithm has been validated on simu-

lated T1-weighted, T2-weighted, and PD-weighted brain MRI by

performing different experiments. To start with, the selection of opti-

mal parameters’ values has been described for different variants of

XNLM. Then, these variants have been compared with the standard

Table I. Optimized values of parameters in different denoising algorithms.

Noise (r)

Parameters

s p k Nf wh w0 Wavelet

XNLM0/XNLM1 5 2 (T1),1(T2/PD) 1 60 0.01 0.1 –

XNLM2/XNLM 5 2 (T1),1(T2 /PD) 1 (Io), 0.9 (Iu) 60 0.01 0.1 sym8
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IANLM and ENLM algorithm in terms of denoising and computa-

tional performance measures. Additionally, the denoising perform-

ance of the proposed algorithm has been compared with four other

state of the art denoising methods. Further, the proposed algorithm

has been applied to filter noisy brain MRIs with MS lesions to show

the validity of the proposed algorithm in a practical pathological con-

text. Finally, the 3D brain volume filtered by the proposed algorithm

(reconstructed from corresponding 2D filtered slices) has been shown

to visualize the restored structures more comprehensively.

The results of different denoising algorithms have been presented

visually and quantitatively. PSNR has been used as a quantitative

measure to assess the denoising performance. It measures the percep-

tible similarity between two images, and is computed using the fol-

lowing equation.

PSNR510log10ðR2=MSEÞ520log10ðR=RMSEÞ (7)

where, R represents the maximum possible intensity value of a pixel

in the image. For eight-bit gray level images, R is set to 255. RMSE

is the root mean square error between the restored and original

(ground truth) image.

The experiments in this work have been conducted on a Core i7

system with 16 GB RAM and 3.4 GHz Turbo Boost CPU. MATLAB

R2013a (8.1.0.604, http://www.mathworks.com/products/matlab/)

has been used as the computational tool (2011).

A. Selection of Parameters. In this section, the selection of

optimal values of XNLM parameters has been discussed for brain

MRI denoising. These parameters’ values have been obtained after

empirically testing the performance over a suitable range of their val-

ues. Moreover, the choice of optimal values is made by considering

the performance at various noise levels. Table I lists the optimal val-

ues of different parameters of XNLM. In general, the parameters are

applicable to all types of investigated MRI sequences, unless other-

wise specified.

B. Performance Analysis of the Proposed Algorithm. In

this section, the performance of different variants of the proposed

XNLM algorithm has been validated on T1-weighted, T2-weighted,

and PD-weighted brain MRI data. The brain MRIs have been cor-

rupted with Rician noise of various levels, and denoising results of

different variants of XNLM have been presented in terms of PSNR.

The results have been compared with the basic IANLM and ENLM

algorithms, and presented in Table II. The results highlighted in bold

text in Table II correspond to best performance. The parameter val-

ues of IANLM and ENLM have been adopted from their respective

papers (Iftikhar et al., 2013) and (Iftikhar et al., 2014). It can be

immediately concluded from the results in Table II that different var-

iants of XNLM yield considerably improved denoising results com-

pared to IANLM and ENLM. Further, the spiral implementation of

XNLM results in improved denoising performance compared to con-

ventional row/column wise implementation, especially for higher

noise levels (compare XNLM0 and XNLM1). It also becomes evident

from Table II that the WCM procedure improves the quality of

restored image (compare XNLM1 and XNLM). The variants XNLM

and XNLM2 (implementing the proposed pixel preselection method)

yield almost similar results. Therefore, the results are only presented

for XNLM in Table II. The main advantage of XNLM2 is to improve

the computational efficiency of the algorithm, which can be verified

by computational results in Section III.C. The variant XNLM, which

encompasses all the proposed extensions to IANLM, consistently

produces highest PSNR values in all cases. Therefore, throughout the

rest of the text, the term “proposed algorithm” refers to this particular

variant only.

C. Computational Performance of the Proposed
Algorithm. In this section, we have compared the computational

performance of XNLM with the standard IANLM algorithm. To

show the computational advantage of our proposed pixel preselection

procedure, we have also measured the computational performance of

XNLM2. The computational performance has been measured in

terms of average time (number of seconds) that the algorithm con-

sumes while denoising an input image.

Table III presents average computational results over T1-

weighted, T2-weighted, and PD-weighted brain MRIs using different

algorithms. The results highlighted in bold text in Table III corre-

spond to minimum (best) computational time. It can be seen from

Table III that for all noise levels that we have tested, XNLM con-

sumes much less time to denoise images compared to XNLM2 for

Table II. Quantitative performance comparison of IANLM and ENLM

with different variants of the proposed algorithm in terms of PSNR.

Noise (r) IANLM ENLM XNLM0 XNLM1 XNLM

T1-weighted brain MRI

7.5 32.47 36.27 36.35 36.37 36.67

15 26.94 31.84 32.05 32.17 32.57

22.5 23.58 28.89 28.75 29.25 29.64

30 21.15 26.83 26.29 27.17 27.42

T2-weighted brain MRI

7.5 31.68 34.76 35.70 35.72 35.95

15 26.61 30.19 30.85 30.94 31.28

22.5 23.46 27.71 27.95 28.10 28.42

30 21.09 25.62 25.60 25.77 26.07

PD-weighted brain MRI

7.5 32.34 36.70 37.66 37.69 37.69

15 27.08 31.76 32.54 32.79 33.20

22.5 23.83 29.34 29.48 29.98 30.31

30 21.45 27.47 27.40 27.89 28.15

Table III. Computational efficiency (average time in seconds) of IANLM and different variants of the proposed algorithm.

Noise(r)

Average Time in Seconds

T1-Weighted Brain MRI T2-Weighted Brain MRI PD-Weighted Brain MRI

IANLM XNLM2 XNLM IANLM XNLM2 XNLM IANLM XNLM2 XNLM

7.5 9.21 11.85 6.84 9.20 11.51 6.44 8.83 11.45 7.02

15 8.03 10.70 7.99 8.29 10.68 7.30 8.51 9.61 7.68

22.5 7.54 9.30 8.36 7.73 10.10 7.69 8.02 8.90 7.99

30 6.39 8.73 8.59 7.38 9.91 8.08 7.76 8.70 8.22
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Figure 4. Performance comparison (in terms of PSNR) of XNLM with contemporary methods. (a) T1-weighted images, (b) T2-weighted images,
and (c) PD-weighted images. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Visual results of filtering a noisy T1-weighted brain image. (a) Noise-free image, (b) Noisy (r 5 15) image. Images filtered by (c) XNLM
(proposed), (d) UNLM, (e) BM3D, (f) PLOW, and (g) OWT-SURELET. [Color figure can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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different types of MRI scans. This shows that the proposed pixel pre-

selection process considerably reduces the computational burden of

the proposed algorithm. It can also be noted that XNLM yields com-

putational performance comparable to the original IANLM algo-

rithm. For some noise levels, the algorithm is computationally even

more efficient than IANLM. The slightly lower computational per-

formance of the proposed XNLM algorithm can be justified by its

large denoising performance advantage over IANLM. Therefore, it

can be concluded that the proposed XNLM algorithm substantially

increases the denoising performance without considerably suffering

from computational perspective.

D. Performance Comparison with Existing Methods. To

obtain a reliable assessment of the robustness of the proposed algo-

rithm, it should be compared with state of the art denoising methods.

Therefore, in this section, we have analyzed the performance of the

proposed algorithm in comparison with a few popular contemporary

denoising methods, namely UNLM (Manjon et al., 2008), PLOW fil-

tering (Chatterjee and Milanfar, 2012), BM3D filtering (Dabov et al.,

2007), and OWT-SURELET (Luisier et al., 2007). These methods

have been already described in Section I.

The proposed XNLM algorithm and the said denoising meth-

ods have been applied to T1-weighted, T2-weighted, and PD-

Figure 6. Visual results of filtering a noisy T2-weighted brain image. (a) Noise-free image, (b) Noisy (r 5 15) image. Images filtered by (c) XNLM

(proposed), (d) UNLM, (e) BM3D, (f) PLOW, and (g) OWT-SURELET. [Color figure can be viewed in the online issue, which is available at wileyonli-
nelibrary.com.]

Figure 7. Visual results of filtering a noisy PD-weighted brain image. (a) Noise-free image, (b) Noisy (r 5 15) image. Images filtered by (c)
XNLM (proposed), (d) UNLM, (e) BM3D, (f) PLOW, and (g) OWT-SURELET. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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weighted brain MRIs corrupted by Rician noise of various inten-

sities. The quantitative results in terms of PSNR have been shown

graphically in Figure 4. It can be immediately noted from the

Figure 4 that XNLM considerably outperforms other denoising

methods. All the contemporary denoising methods lack enough

robustness to noise. UNLM is the only exception, which yields

somewhat comparable performance to XNLM for T1-weighted

images. However, for T2-weighted and PD-weighted images, the

performance of UNLM also deteriorates severely compared to

XNLM. Therefore, it can be concluded that for different scan

types of MRIs, the proposed algorithm is robust to noise and

restores higher quality images compared to other state of the art

denoising algorithms.

Figures 5–7 present visual results of denoising a particular

slice from the T1-weighted, T2-weighted, and PD-weighted

brain MRI volumes, respectively, using XNLM and other con-

temporary algorithms. For each type of MRI scan, original,

noisy (r 5 15) and filtered images have been shown. In each

case, the quality of the image filtered by XNLM is better com-

pared to other denoising methods. A particular portion of each

image is zoomed to show different tissues more prominently.

An instant observation of the zoomed portion reveals the capa-

bility of the proposed algorithm to preserve edges and small

image details. All the contemporary methods either remove the

edge information by blurring the image or do not remove the

potential noisy artifacts. Hence, based on quantitative and quali-

tative assessment, it can be concluded that the proposed algo-

rithm is a better choice than other algorithms.

E. Preservation of Clinical Features. In this section, we have

validated the proposed XNLM algorithm on a simulated noisy T2-

weighted brain MRI volume with MS lesions. MS is an inflammatory

disease in which the insulating covers of nerve cells in the brain are

damaged. The lesions of MS are generally found in white matter

(WM) of the brain and can be visualized using MRI. The perform-

ance of a CAD system using such images heavily depends on the

robustness of the denoising algorithm, as the high quality of denoised

images results in better segmentation, which in turn results in better

classification (diagnosis) of the disease (Hassan et al., 2014). There-

fore, an effective denoising algorithm prior to actual diagnosis is cen-

tral to accurate analysis.

In this section, a T2-weighted brain MRI volume with MS lesions

has been corrupted with Rician noise of certain level (r 5 15), and

has been denoised using the proposed XNLM algorithm. The empha-

sis in this section is on exploring the ability of XNLM to preserve

pathological information contained in MS lesions. State of the art

denoising methods, used in Section III.D, have also been tested on

the said brain volume. Figure 8 qualitatively compares the visual

denoising results of various algorithms for a particular slice of the

3D brain MRI volume.

Visual inspection of the zoomed portion of restored images

reveals that the image restored by XNLM retains the underlying

Figure 8. Visual results of denoising T2-weighted image containing MS lesion. (a) Noise-free image, (b) Noisy (r 5 15) image. Image filtered by

(c) XNLM (proposed)—PSNR: 32.14, (d) UNLM—PSNR: 30.41, (e) BM3D—PSNR: 27.26, and (f) PLOW—PSNR: 26.03, (g) OWT-SURELET—
PSNR: 26.46. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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structure/detail of the MS-lesion in the original image. On the con-

trary, other algorithms have either eliminated important information

relevant to MS-lesion due to blurring (see Figs. 8d and 8e), or have

introduced undesirable artifacts (see Figs. 8f and 8g) in the image.

This phenomenon expresses the inherent capability of XNLM to

retain pathologically important information, which is useful in many

practical applications related to medical analysis and diagnosis. It

should be noted that we have validated the proposed algorithm on all

slices of the T2-weighted volume with MS lesions, however, for

demonstration, results have been presented here for one slice only.

F. Visualization of Reconstructed Brain Volume. The visu-

alization of brain volume in 3D has importance in various medical

applications such as computer-aided surgery (Nakajima et al., 1997;

Rieder et al., 2008). The neurologist can view the texture and orien-

tation of different brain structures more comprehensively in 3D com-

pared to 2D slices of a particular portion of brain. In this section, we

have reconstructed the 3D brain volume from 2D slices using the

MIPAV tool (McAuliffe et al., 2001). MIPAV is specially designed

by Center for Information Technology at National Institutes of

Health for medical image processing, analysis and visualization. For

validating XNLM, we have presented the reconstructed T1-weighted

brain volumes in Figure 9. The orientation of the view is from bot-

tom of the subject head. First two columns in Figure 9 show the

reconstructed simulated and noisy (r515) brain volumes, respec-

tively. Whereas, last two columns show the brain volumes recon-

structed after denoising the individual brain slices by XNLM and

UNLM, respectively. For simplicity of presentation, results have

been compared here with UNLM only, owing to its best performance

among various contemporary algorithms used in Section III.D. It can

be observed from Figure 9 that the proposed XNLM algorithm pro-

duces a brain volume very similar to the noise-free brain volume.

The brain volume reconstructed after denoising by UNLM, con-

versely, has lost important structural details. This can be seen more

vividly by comparing the highlighted portion of different brain vol-

umes. Hence, the proposed XNLM algorithm is expected to perform

reasonably well in medical applications, which are based on process-

ing and visualization of 3D brain volumes.

IV. EXPERIMENTS ON REAL BRAIN MRI

In this section, we have performed experiments on real (clinical)

brain MRI to investigate the practical effectiveness of the proposed

XNLM algorithm. For this purpose, a T2-weighted knee MRI has

been denoised using the proposed algorithm. As the amount of noise

in clinical MRIs is not known in advance, some noise estimation

method should be used to assess the amount of noise in clinical

images. A simple, yet fairly accurate, method is to estimate the noise

from the background part of square magnitude MRI (Fernandez

Figure 9. Visualization of 3D brain volume after reconstruction from individual slices. (a) Noise-free brain volume, (b) Noisy (r 5 15) brain vol-

ume. Brain volume reconstructed after filtering by (c) XNLM (proposed) and (d) UNLM. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 10. Denoising of a clinical MR image using the proposed XNLM algorithm. (a) Clinical knee MR image along with inherent noise, (b)
Image filtered using XNLM, and (c) Residual image. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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et al., 2008). According to this method, the standard deviation of

noise can be estimated using the following mathematical expression.

r̂5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

XN

k51

M2
k

vuut (8)

where Mk represents the background part of the magnitude MRI, N is

the number of pixels in Mk, and r̂ is the estimated standard deviation

of Rician noise. The background part of the image can be obtained

by any suitable threshold selection method.

Figure 10 shows a clinical MRI of knee containing inherent

Rician noise, which was estimated using Eq. (8) prior to denoising

using the proposed XNLM algorithm. It can be observed from Figure

10(b) that XNLM effectively removes noise from the knee image

while preserving fine image details. As highlighted in Figures 10(a)

and 10(b), small image structures are preserved in the filtered image.

Such small structures may indicate cracks in knee, and therefore, are

critical for further computer-aided analysis. Figure 10(c) also shows

corresponding residual image, which is obtained by subtracting the

filtered image from noisy version of the image. It is usually com-

puted as a qualitative measure of quality of the filtered image. For

adequate denoising, the residual image should contain minimal

image structures (Buades et al., 2005). This can be verified from the

residual image shown in Figure 10(c), which is highly uncorrelated

and shows very few image structures. Thus, the proposed XNLM

algorithm can be reliably used in practical medical applications.

V. CONCLUSION

An XNLM denoising algorithm has been proposed by adapting

IANLM (a variant of classical NLM algorithm) to Rician noise in

MRIs, and introducing a WCM procedure. The computational bur-

den of XNLM has been reduced by proposing a parameter-free pixel

preselection process, which automatically adapts to the amount of

noise in the image. Different variants of XNLM have been proposed

to investigate the impact of different extensions introduced in the

proposed algorithm. To validate these variants, extensive experimen-

tation has been performed on brain MRIs acquired with different

types of MRI scans, namely T1-weighted, T2-weighted, and PD-

weighted MRIs. These images have been corrupted by Rician noise

of various levels, and the performance of the proposed variants of

XNLM has been compared with standard IANLM and ENLM algo-

rithms. Moreover, the proposed XNLM algorithm, incorporating all

the introduced extensions, has been compared with a few state of the

art denoising algorithms. Improved quantitative measures and quali-

tative results (for 2D and reconstructed 3D images) show the robust-

ness of the proposed algorithm over other contemporary algorithms.

Additionally, the proposed algorithm has been shown to preserve

pathologically important information by validating it on T2-

weighted brain MRI containing lesions of MS. Therefore, it can be

concluded that the proposed XNLM algorithm improves the quality

of results in practical medical systems.
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