
Focal Liver Lesion Tracking in CEUS for
Characterisation based on Dynamic Behaviour

Spyridon Bakas1, Andreas Hoppe1, Katerina Chatzimichail2, Vasileios
Galariotis2, Gordon Hunter1, and Dimitrios Makris1

1 Digital Imaging Research Centre, School of Computing and Information Systems,
Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road,

Kingston-upon-Thames, Surrey, KT1 2EE, London, United Kingdom
{<s.bakas, g.hunter, d.makris> @kingston.ac.uk}

2 Radiology & Imaging Research Center, University of Athens, Evgenidion Hospital,
Papadiamantopoulou Street 20, T.K. 115 28, Athens, Greece.

{katerina@hcsl.com, vgalariotis@hotmail.com}

Abstract. This paper presents a methodology for tracking a hypo- or
hyper-enhanced focal liver lesion (FLL) and a healthy liver region in a
video sequence of a Contrast-Enhanced Ultrasound (CEUS) examina-
tion. The outcome allows the differentiation between benign and ma-
lignant cases, by characterising FLLs of typical behaviour, according to
their Time-Intensity curves. The task is challenging mainly due to inten-
sity changes caused by contrast agents. Initially the ultrasound mask is
automatically localised and then the FLL and parenchyma regions are
tracked, assuming affine transformations on the image plane, employing
the point-based registration technique of Lowe’s scale-invariant feature
transform (SIFT) keypoints detector. Finally, a quantitative evaluation
of the tracking process provides a confidence measure for the character-
isation decision.

1 Introduction

Focal liver lesions (FLLs) refer to a particular condition of hepatic disease, which
is the fifth largest cause of death in the UK [1]. FLLs are nodules foreign to the
liver anatomy that can be either relatively harmless (benignities), or progres-
sively worsening that can potentially result in death (malignancies). There is
much interest from clinicians in the potential for the early distinction of a ma-
lignant FLL from a benign one as the former, if diagnosed sufficiently early (i.e.
in a premature state), can be healed without performing any surgical operation.

Contrast-Enhanced Ultrasound (CEUS) is an attractive imaging modality for
the visualisation of FLL candidates as the equipment it requires, when compared
with CT or MRI, is relatively inexpensive [2] and portable, allowing its use in
any operating room. CEUS has recently gained acceptance for the detection and
characterisation of very small FLLs [3]. CEUS requires the intravenous injec-
tion of microbubble contrast agents, offering an enhancement to the brightness
intensity of blood flow in an image. The modality’s effectiveness, in terms of
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Table 1. Signal of FLL VSs during the phases of a CEUS examination. The “+” sign
means that the FLL is brighter than the parenchyma and the “-” sign the reverse.

VASCULAR Hyper-enhanced Hypo-enhanced

SIGNATURE Unipolar. ID:(a) Bipolar. ID:(b) Unipolar. ID:(c) Bipolar. ID:(d)

SIGNAL

TYPICAL
BEHAVIOUR
OF

Benign FLL
(e.g.Haemangioma,
Adenoma, Focal

Nodular Hyperplasia)

Malignant FLL
(e.g. Hepatocellular

Carcinoma,
Metastasis)

Benign FLL
(e.g. Nodules,

Cysts)
Benign FLL

diagnostic accuracy for evaluation of malignant FLLs exceeds 95%, according to
studies by radiologists [4]. However, few radiologists have been trained to apply
this modality and interpret its visual cues.

1.1 CEUS Examination

The examination comprises three phases, whose duration vary depending on the
physiology of the patient’s liver and heart. The total duration of an examination
lasts a maximum of 10 minutes, after which a diagnosis can be made [5]. The first
phase is characterised by the enrichment of the FLL and the healthy liver area
(parenchyma) due to the inflow of the contrast medium. During the second phase,
the flow of the medium is stabilised, resulting in no relative change in brightness.
Finally, the third phase is characterised by the outflow of the medium.

There are two main vascular signatures (VSs) of FLLs: the hyper-enhanced
and the hypo-enhanced [Table 1]. VSs describe the way that an FLL dynam-
ically behaves in comparison to the parenchyma. During the first phase, the
hyper-enhanced FLLs are enriched prior to the parenchyma, while in the hypo-
enhanced category the parenchyma is enriched first. FLLs whose VS is hyper-
enhanced throughout the three phases are called unipolar hyper-enhanced. In
contrast, bipolar hyper-enhanced are those where the contrast medium outflows
from the FLL prior to the parenchyma during the third phase. If the VS of an
FLL is hyper-enhanced, it is mainly in the third phase where its type (benign or
malignant) is identified [6], whereas if the VS is hypo-enhanced then the FLL’s
type is identified as benign from the first phase [7]. The signal of an FLL’s VS
describes the FLL’s dynamic behaviour. Different signals are linked to different
medical conditions. Therefore assigning one of the four different signals [Table 1]
to an FLL, is of particular medical importance and assists the radiologist make
a reliable diagnosis of an FLL of typical behaviour.

1.2 Challenges of Image Analysis

Accurate and reliable tracking of an FLL poses a very challenging task due to
significant changes in its apparent 2D size, shape, intensity and motion over
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Fig. 1. Significant changes in the appearance of the liver and the FLL during a CEUS
examination. In this particular case, the FLL shape is initialised at frame 250 (b).

the course of the examination (Fig.1). In addition, CEUS imagery is often of
low quality, due to noise generated by the propagation of the US waves in soft
tissue. This low signal-to-noise ratio, as well as the poor definition of boundaries
in the US image makes processing it more complex than images acquired with
other imaging modalities (e.g. CT, MRI) [8].

Instability of the clinician’s hand holding the transducer and the physiolog-
ical motion of the patient are additional factors that affect the location of the
FLL within an image. Physiological motion refers to the combination of cardiac
and breathing motion occurring due to the patient’s physiopathology (e.g. vari-
ability of heart rate, irregular breathing patterns). This, as well as motion of
the inner human organs, affect the motion of the devices and consequently the
acquisition of the video, resulting in potential out-of-plane movement. During
this movement, a radiologist normally attempts the manual stabilisation of the
US target’s view within the obtained image plane (x, y) by changing the ele-
vation axis (z) of the US probe, but thus introducing the issue of the FLL’s
dispersion in depth. Furthermore, the continuous irregular repetitiveness of all
these disturbances inevitably degrade the quality of the acquired data.

1.3 Related Work

Shiraishi et al. [9] developed a computer-aided diagnostic scheme for distinguish-
ing between only three specific FLL types of hyper-enhanced VS (i.e. Metastasis,
Haemangioma and Hepatocellular Carcinoma). Segmentation of the FLLs was
obtained by manual annotation of all images processed, by a physician. Then,
an Artificial Neural Network was used for the classification of FLLs.

Goertz et al. [6] used the Sonoliver software (Tomtec, Germany) to quantify
FLLs. The software allows for semi-automatic motion compensation by combi-
nation of manual segmentation of FLLs and parenchyma, background subtrac-
tion, and automatic alignment of ROIs, although no specific technical details are
given. The outcome of the study [6] implies that the software could only work
with data obtained according to particular acquisition standards (e.g. stability of
the clinician’s hand, no patient’s irregular breathing patterns, no FLL dispersion
in depth) where motion is minimal.

Bakas et al. [10] developed a histogram-based tracking approach for charac-
terising FLLs of only hyper-enhanced VS. In contrast with [6] and [9], [10] applies
a motion tracking approach to the region of interest (ROI) to avoid the need for
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their manual alignment. This approach is mainly based on intensity histograms of
the FLL region and also utilises Lowe’s scale-invariant feature transform (SIFT)
keypoints detector [11]. However, a histogram-based motion tracking approach
may suffer because the intensities of the FLL and parenchyma regions become
similar towards the end of the first phase and during the second phase. Instead,
an automatic motion tracking method based on affine transformations of salient
points is proved to be more reliable (see Section 2.2).

2 Methodology

The proposed system deals with both VSs of FLLs and attempts to distinguish
the type of a FLL (benign or malignant) based on the temporal profile (dynamic
behaviour) of its brightness intensity in the image sequence. Robust tracking of
two ROIs (FLL and parenchyma) is important, in order to accurately obtain
intensity information from the exact areas and therefore provide the ability to
characterise with confidence the typical behaviour of FLLs from their dynamic
behaviour, while taking into consideration the four main types of VS signals.
After obtaining the ground truth (GT) and the decision of the system for these
ROIs, a quantitative evaluation of the tracking is carried out, in order to demon-
strate that the system can be used as a valid second-opinion tool for a radiologist.

The system employs the point-based registration technique of SIFT [11] to
track FLL and parenchyma contours within the conical area covering the ultra-
sonographic image (US mask), whilst overcoming challenges mentioned in Sec-
tion 1.2. The derived contours are combined with the statistical analysis method
of Generalised Procrustes Analysis (GPA) [12] to model the mean shape of the
two ROIs. Size and shape information so obtained are then used to localise these
two ROIs in an image from the last phase of the examination and obtain their
spatial average intensities at this time t. The difference of these average inten-
sities for each frame determine the value of the “signal” of the FLL’s VS [Table
1]. Categorising this signal according to pre-defined standard VSs [7] assists the
characterisation of the FLL.

2.1 Definition of Workspace

In this section, we propose an automatic approach to define the workspace (US
mask) (Fig.3.a), rather than to label it manually as in [10]. Therefore, the inten-
sity values of the pixels of the image in a frame t, are considered as the visual
features Pt:

Pt = [pxt,yt ]W×H (1)

where pxt,yt represents the intensity of pixel p with coordinates (x, y) in frame t.
In addition, W and H depict the width and the height of the image, respectively.

Subsequently, the maximum and minimum intensity values over time are
found for each pixel pxt,yt and then the US mask is automatically obtained. The
US mask consists of all the pixels satisfying the following criterion:

max (pxt,yt)−min (pxt,yt) > Tmask. (2)
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Fig. 2. Phase 1 processing. Where t ∈ [1, ..., Nfr],Nfr = numberOfFrames.

where t ∈ {1, ..., Nfr}, Nfr is the total number of frames and Tmask is a threshold
found iteratively after considering that more than one third of the image should
be segmented as the foreground area.

The morphological operation of binary erosion is employed to remove protru-
sions from objects and thin connections between objects. The connected com-
ponents algorithm is then used to segment these areas. Finally, the largest-sized
area within the resulting image provides the final US mask.

2.2 Motion Tracking under Affine Transformation

After obtaining the US mask, the video sequence of the first phase is processed
to obtain the area and shape descriptors of the ROIs (Fig.2). The FLL and the
liver contours (described by a matrix Ct) are initialised by a radiologist at frame
t0, based on local texture information, as prior medical knowledge is considered
advantageous in correctly spotting an FLL (Fig.3.b,c). Ct is a 2×(U+V ) matrix,
comprising (U+V ) 2D points, where U and V represent the number of points of
the liver and the FLL contour, respectively. The contours are tracked backwards
and forwards in time from the frame where they are initialised.

SIFT is used to register salient points (Qt and Qt+1) within the US mask, in
two consecutive frames. Qt is a 2×Kt matrix, comprising Kt 2D salient points
qκ,t at time t, where κ ∈ [1,Kt]. A statistical descriptor vector (D(qκ,t)) with 128
dimensions is assigned to each point (qκ,t) by SIFT [11], in order to characterise
it. The correspondence of the registered points between the two frames is esti-
mated by minimising the Nearest Neighbour Distance Ratio (NNDR) between
the descriptors of the two frames. Specifically, for every point qκ,t, another point
qλ,t+1 , where λ ∈ [1,Kt+1], is found that fulfills the following equation:

(qκ,t, qλ,t+1) = argmin
qκ,t∈Qt

qλ,t+1∈Qt+1

[arccos(DT (qκ,t) •D(qλ,t+1))] (3)

Similarly, we find qλ′,t+1, where λ′ ∈ [1,Kt+1], such that:

(qκ,t, qλ′,t+1) = argmin
qκ,t∈Qt

qλ′,t+1∈Qt+1,λ
′ 6=λ

[arccos(DT (qκ,t) •D(qλ′,t+1))] (4)
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Fig. 3. a.Automatically obtained US mask. b.Liver’s GT (LGt). c.FLL’s GT (FGt) and
non-liver areas’ GT (EGt), d.Time-Intensity curves (TIC), e.VS Signal

We accept that there is a correspondence between points qκ,t and qλ,t+1 in the
two frames t and t+ 1, if:

arccos(DT (qκ,t) •D(qλ,t+1))

arccos(DT (qκ,t) •D(qλ′,t+1))
< Z (5)

where Z ∈ [0, 1] is a threshold value. If a point qλ,t+1 is the best match for
more than one point qκ,t, then these correspondences of qλ,t+1 are rejected.
Consequently, we only keep reliable correspondences.

The deformations on the image plane between these correspondences are
described by affine transformations (e.g. translation, rotation, shear). Therefore,
they are approximated by a transformation matrix Tt→t+1 that is computed by
the following equation:

At+1 = Tt→t+1At => Tt→t+1 = At+1A
−1
t . (6)

where At and At+1 are 2×Rt,t+1 matrices, comprising Rt,t+1 2D salient points at
time t and their correspondences at time t+1, respectively (Similarly with t and
t− 1 respectively, if tracking backwards). As matrix At is not square, A−1t is its
Moore-Penrose inverse [13], computed using the singular value decomposition.

Tt→t+1 is then applied to Ct, in order to obtain the corresponding contours
in the subsequent frame, estimated as Ct+1 = Tt→t+1Ct. Thus, the contours are
tracked in subsequent frames, while their shape and size are also updated based
on the affine transformation of subsequent frames, instead of applying the global
translation of corresponding SIFT points to the centre of each contour as done
in [10].

After all ROIs’ contours are obtained in all frames, they are sampled to a
set of marked points, in order to model the shape of that ROI. The overall
mean shape of the sampled contours is computed by GPA [12] by optimally
superimposing the set of all the contours on a single reference orientation. As
shown in Fig.2 the FLL’s contours originally tracked through the sequence are
aligned and then their mean shape is obtained (black-contour). Such a shape is
expected to be more accurate than the shape defined manually by the radiologist
based on local texture information, as the former takes into account variation
across all the frames.
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Fig. 4. Motion tracking of the FLL and parenchyma regions with the proposed method.

Finally, the value of the signal of the FLL’s VS (Fig.3.e) is determined by
the following equation:

SignalV S =

∑nt
i=1 pxt,i,yt,i

nt
−

∑lt
j=1 pxt,j ,yt,j

lt
(7)

where nt and lt are the number of the pixels within the FLL and parenchyma
regions respectively, at frame t. The characterisation of the FLL according to
the four predefined VSs [7] is then based on this signal throughout the duration
of the examination.

3 Results & Validation

3.1 Data Acquisition

The proposed tracking system is applied and evaluated on real clinical data of
14 case studies of patients with similar physical condition. The data acquisition
is done by using a Siemens ACUSON Sequoia C512 system with low-frequency
6C2 convex Transducer (2-6MHz) capturing 25fps and following the workflow
described in Section 1. Each case includes at least one video sequence from the 1st
phase and a static image of the 3rd phase with resolution 768x576 pixels and no
compression applied. The contrast medium used was the 2nd-generation contrast
medium of sulphur hexafluoride microbubbles (SonoVue, Bracco Diagnostics)
that allows for excellent depiction of the FLL vascularity and perfusion [3].

3.2 Ground Truth

To evaluate the accuracy of the tracking method and the level of confidence of
the decision on the signal of the FLL’s VS, the exact positions that the FLL and
the liver areas occupy on each frame were manually annotated, providing their
GT as FGt and LGt respectively, for every frame t (Fig.3.b,c).

The initialisation of their shapes is performed by the radiologist, whereas
their displacements in subsequent frames is done by another operator. The same
shape is used for initialising the FLL at frame t0 (Ct0) and creating FGt0 in
the proposed system. Furthermore, the GT of areas that do not belong to, but
appear within the liver have been manually labelled on each frame t (EGt), in
order to take these artefacts (i.e. veins and arteries) into account when evaluating
the tracking of the parenchyma (Fig.3.c).
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Fig. 5. OF and OP depict the overlap of the FLL and the parenchyma, respectively,
as explained in Section 3.3. EP depicts the noise included within OP in our method.

3.3 Evaluation Metrics

The accuracy of the proposed method is quantitatively evaluated by comparing
its decisions with the GT throughout the sequence. The validation of the system
is based on considering five regions: the GTs (FGt , PGt , EGt), the FLL decision
(Fdt) and the parenchyma decision (Pdt). Note that PGt = FCGt ∩ LGt , where
FGt , PGt ⊂ LGt , and EGt ⊂ PGt .

The spatial overlap metric for the FLL regions (OF ) is computed by the

equation OF = 1
Nfr

Nfr∑
t=1

OFt , where OFt =
|FGt∩Fdt |
|FGt∪Fdt |

. This (OFt) obtains infor-

mation only from pixels pxt,yt ∈ FGt ∩ Fdt and penalises pixels misclassified as
either FLL or non-FLL (pxt,yt ∈ FGt4Fdt).

The spatial overlap metric of the parenchyma regions (OP ) is computed as

OP = 1
Nfr

Nfr∑
t=1

OPt , where OPt =
|PGt∩Pdt |
|Pdt |

. This (OPt) obtains information from

pixels pxt,yt ∈ PGt ∩ Pdt , but its definition differs from that for OFt , as pixels
pxt,yt ∈ PCdt ∩PGt , whenever Pdt ⊂ PGt , should not be penalised. This allows the
operator to initialise a smaller region for tracking (Pdt), within PGt , as correct
information will still be provided taking into account the spatial uniformity of the
enrichment distribution of PGt . Last but not least, there is a need to evaluate
the percentage of pixels that are non-liver areas but incorrectly classified as

parenchyma (i.e. EPt), which are computed as follows: EP = 1
Nfr

Nfr∑
t=1

EPt , where

EPt =
|EGt∩Pdt |
|Pdt |

.

3.4 Results

In the cases provided, the third phase is depicted only in static images. Therefore,
the FLL ROI is localised in the third phase by employing the exhaustive search
method of sliding window and maximising a spatial overlap criterion as in [10].
More specifically, the ROI is localised by maximising the intersection between
the automatically segmented areas of the static image and the FLL’s mean shape
as estimated by GPA in the first phase, allowing translation and rotation of the
latter through a sliding window.
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Table 2. FLL characterisation. VS ID refers to IDs given in Table 1 (e.g.(a),(b),(c),(d)).

Case studies 1 2 3 4 5 6 7 8 9 10 11 12 13 14

VS ID (GT) (b) (b) (b) (b) (a) (a) (a) (b) (b) (b) (b) (b) (c) (c)

VS ID (Proposed System) (b) (b) (b) (b) (a) (a) (a) (b) (b) (b) (b) (b) (b) (c)

VS ID of [10] (b) (b) (b) (b) (a) (a) (a) (b) (b) - - - - -

An example of the application of the proposed method is shown in Fig.4, demon-
strating that the ROIs are tracked even when the video’s brightness and contrast
are extremely low (e.g. beginning of sequence). The frames show the two ROIs
under dramatic appearance changes over time.

The overall average spatial overlaps across our clinical data are above 88%
and 86% for OF and OP respectively, while for EP is just above 9% (Fig.5).
The mean of OF and OP exceeding 87% shows the success of the proposed
tracking method, giving confidence that the obtained signal of the VS is truly
representative of the FLL, hence providing reliable characterisation of FLLs of
typical behaviour. As shown in the first two rows of Table 2 this proved to be
valid in 13 out of 14 cases. VS of FLL of case 13 is mischaracterised, as incorrect
intensity information is obtained due to much increased dispersion in depth.

The method in [10] is evaluated using the same dataset as ours. Note that
[10] is unable to track the parenchyma. The results depict 22.4% overlap (OF [10]
- Fig.5). This low level of overlap, is caused by the histogram-based approach
struggling to deal with the intensity variations and therefore fails to properly
update the shape of the FLL over time. On the other side, the hereby proposed
method considers salient points’ deformations of affine transformations for all the
regions’ updates, which seems more reliable. The final decision of each method
is shown in Table 2. Comparison of the results between the two methods depict
that [10] is unable to characterise FLLs of hypo-enhanced VS (cases 13,14) as
it was not designed for this VS. Also [10] fails if video has low brightness and
contrast (cases 10,11,12). In general, tracking in [10] suffers when the relative
differences of brightness and contrast between FLL and parenchyma become
small (e.g. towards the end of phase 1 and during phase 2). It should be noted
that [10] does not characterise an FLL based on its dynamic behaviour, but by
observations on the sign change of the signal of hyper-enhanced FLLs, between
phase 1 and 3.

4 Conclusion

The proposed system provides accurate tracking and quantitative evaluation of
the FLL and the parenchyma areas, whilst characterising the type of an FLL
based on the signal of its VS (dynamic behaviour). The tracking of the FLL and
the parenchyma is automated by taking into account deformations of the regions
as affine transformations on the image plane and only requires the initialisation
of the ROIs in one frame as an input by the operator. In our experiments, the
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ROIs of 14 clinical cases were tracked with average spatial overlap 87.2% and 13
lesions were correctly characterised by the proposed system.
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