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Abstract—This paper describes a contribution to a wider
project which aims to provide an intelligent automated assistant
to radiologists performing the skilled and time-intensive task of
detecting and characterising cancerous lesions within a human
liver from Contrast-Enhanced Ultrasound (CEUS) video se-
quences. This particular contribution relates to automatically
locating the optimal frame, for initialising a suspected focal
liver lesion (FLL), within a CEUS video sequence. Currently,
this task is routinely performed manually by radiologists, but
is very time-consuming. The proposed approach is to use statis-
tical and image processing techniques to automatically identify
the most suitable frame for performing this initialisation, which
should save the radiologist significant time and effort, bearing
in mind the continuously increasing amount of CEUS data
acquired and processed. In the future, this could be coupled
with a method for automatically initialising the FLL’s area
within the area of the ultrasonographic image in this optimal
frame and, together with already produced systems for the
tracking and characterisation of such lesions, lead to a fully
automated system assisting clinicians in the diagnosis of such
lesions.
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I. INTRODUCTION

Contrast-Enhanced Ultrasound (CEUS) is a widely used
method in Radiology and is accepted to be a particularly
useful modality for the detection and characterisation of fo-
cal liver lesions (FLLs) [4], which are potentially malignant
nodules within the liver. In comparison with conventional
Ultrasound, CEUS provides a grey-scale enhanced display
by maximising the contrast and the spatial resolution be-
tween the FLLs and the healthy liver area (parenchyma)
through the use of injected contrast-enhanced agents [5].
More specifically, CEUS offers a peripheral enhancement to
nodules, based on the fact that the FLLs are solid- or liquid-
containing nodules, foreign to the liver’s anatomy. CEUS
has improved to the point at which it exceeds the sensi-
tivity and specificity of other modalities, such as computed
tomography (CT) and magnetic resonance imaging (MRI),

Figure 1. Schematic examples of the four major “signature signals”
for FLL characterisation. In the first column of graphs, the red curves
depict the temporal profile of the brightness intensity of the FLL, while
the black curves show the corresponding profile for the parenchyma. In the
second column, the “signature signals” are depicted, which are derived by
subtracting the black curve from the red curve. Different signals correspond
to different medical conditions.

for diagnosis of lesions within the liver [4].
There is a sequence of tasks that need to be performed

for a valid diagnosis to be made. After the acquisition of a
CEUS video sequence, the radiologist studies the sequence
‘offline’ and needs to find the frame where the boundaries of
the FLL are clearly visible in the image plane, providing a
lesion well-distinguished from the surrounding parenchyma
area. Additionally, the identified shape of the FLL should
be sufficiently representative, in order to initialise it as the
region of interest. Subsequently, the shape of the FLL is
followed (“tracked”) throughout the video sequence acquired
and its dynamic behaviour (the temporal profile of the
brightness intensity) is evaluated in comparison to that of
the parenchyma. This provides a signal allowing for the
characterisation of the FLL. Different signals correspond to
different medical conditions, as shown in Fig. 1.
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Figure 2. a) Frame 250 depicts the lesion too early to initialise it, b) Frame
336. Radiologist’s decision on the choice of the optimal frame for the FLL
initialisation (i.e. gold standard), c) Frame 400, the area surrounding the
lesion has become too bright.

The initialisation of the area of the lesion in some frame
in the CEUS video sequence is an essential task to be
performed, in order to allow the tracking of the FLL through
the sequence and consequently its characterisation as either
benign or malignant, based on its dynamic behaviour [3]. In
order to do this, the radiologist must first find the optimal
frame in the video sequence for manually initialising the
boundaries of the FLL. Conventionally, working backwards
and forwards through the video sequence, the radiologist
selects the initialisation frame by eye, choosing the frame
where the FLL is depicted with its maximum excitation
relative to the remainder of the image plane. This frame is

(a) (b)
Figure 3. The visible information on a frame; in (a) before the definition
of our workspace including the textual information provided for the CEUS
operator, and in (b) after its definition, having removed the information
outside the ultrasonographic image.

expected to be the one with the maximum contrast between
the FLL and the parenchyma, which is noted to occur during
the enrichment phase. This will provide well-defined FLL
boundaries, allowing for an accurate initialisation.

The task of selecting the frame for the FLL initialisation
is very time-consuming for the radiologist and depends on
the quality of the video sequence, the CEUS operator, as
well as the patient. The quality of the video sequence refers
to low signal-to-noise ratio, where the noise arises due to
the propagation of the ultrasound (US) waves in soft tissues
[6]. Additionally, instability of the clinician’s hand when
holding the transducer affects the localisation of the FLL
within the region of the ultrasonographic image. Moreover,
the combination of motion effects arising from the patient’s
heartbeat and breathing, particularly due to physiopathology
(e.g. variability of heart rate, irregular breathing patterns)
can affect the acquisition of the video, resulting in potential
apparent out-of-plane movement of the FLL. During this
movement, the clinician normally tries to manually correct
the view of the US target, within the obtained image plane
(x, y), by changing the elevation axis (z) of the transducer,
but thus introducing an issue of the FLL being dispersed in
depth. Furthermore, there are not any standardised criteria
for the selection of this frame and therefore the task is
dependent on human skill & knowledge and prone to human
error.

This project focuses on the development, testing, and
evaluation of an interface that will assist a clinician to
make a reliable diagnosis whilst intelligently reducing the
time and effort required by reducing the potential inter-
actions between the radiologist and the acquired data. We
have identified a number of tasks in this process suitable
for automation, namely identification of the optimal frame
for initialisation, performing the initialisation of the FLL
region and motion tracking of this region throughout the
video sequence, with the intention of acquiring the temporal
profile of its brightness intensity. In this paper, we focus
on the task of automatically choosing the optimal frame
for the initialisation of the FLL region. Our initial work
on motion tracking of a manually initialised FLL and its
characterisation based on its dynamic behaviour has already
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Figure 4. (a) Average intensity of our workspace over time (in frames).
The black curve depicts the original values (noisy representation) and the
red curve those after a ’moving average’ smoothing is performed. Note the
particularly noisy variation up to approximately frame 80. (b) Gradient of
smoothed average intensity over time. Maximum is around frame 300. (c)
Second derivative of the smoothed average intensity curve, over time. The
curve crosses the zero line around frame 300. Initial and terminating frames
of the CEUS video sequence are 1 and 491, respectively.

been published elsewhere [1]–[3].

II. PROPOSED METHODS

In order to select the optimal frame for performing the
initialisation of the FLL region, we need to understand how
an experienced radiologist performs the same task. There-
fore, we need to find a method of calculating the contrast
between the lesion and the parenchyma and subsequently
locate where in the video sequence this contrast reaches its
maximum. However, there is the intrinsic problem of this
whole procedure being carried out before the region of the

FLL has been identified, forcing us to work with the entire
area of the ultrasonographic image (Fig. 3.b).

Our approach takes a subset of the video sequence be-
tween specified initial and final frames as input and auto-
matically identifies the optimal frame for FLL initialisation
as its output. Input of these initial and final frames is
essential since the provided CEUS video sequences included
frames acquired before the transducer was focused on the
region of interest and thus the beginning and end of each
sequence includes irrelevant and incomprehensive data for
our purposes. Therefore, in order to reduce errors in this
automated selection the irrelevant frames are removed.

We propose and compare three methods for identifying
this optimal frame. The first is based on the expectation
that maximum contrast will be achieved when the rate of
change of the brightness intensity of the image is maximal.
The other two investigate how the variation of brightness
intensity across the image changes over time - one studying
the variation over all pixels in the area of the ultrasono-
graphic image, while the other divides this area into local
neighbourhoods of n×n pixels, where n is small compared
with the overall size of the image.

In all methods, the workspace is initially defined auto-
matically as the conical area viewed by CEUS, as described
in [3], in order to remove irrelevant information - notably
textual data provided for the CEUS operator (Fig. 3). This
workspace is then applied as a mask to every frame of
the video sequence, selecting only the relevant conical area
whilst removing the aforementioned artefacts.

A. Method 1 - Gradient based

In this approach, the average brightness intensity of
the workspace is computed for each frame of the video
sequence. However, there are very short-term fluctuations
in this intensity, some of which are due to noise and/or
physiological motion of the patient’s inner organs. These
fluctuations are irrelevant to the dynamic behaviour of the
defined workspace over a longer timescale and hence these
average brightness intensity values are smoothed over a short
timescale using a moving average filter. This filter smoothes
data by replacing each data point with the average of it and
the neighbouring data points defined over a specified time-
window. This is equivalent to a low-pass filter with response
given by the formula:

ys(i) =
1

2N + 1
[y(i+N) + y(i+N − 1) + ...+ y(i−N)] (1)

where, y(i) is the ith data point, ys(i) is the corresponding
smoothed value, N is the number of neighbouring data
points to be included on either side of ys(i) and 2N + 1
is the length of the specified time-window.

An example of this filter in use is shown in Fig. 4.a, where
it can be observed that the smoothed average brightness
intensity of the workspace is continuously increasing after
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Figure 5. The optimal frame for initialisation of the FLL as selected by
the radiologist in (a) and as selected by our method in (b). No significant
differences can be observed visually that can affect the initialisation
procedure.

the 80th frame of the video sequence, in contrast to the un-
smoothed curve, which shows many short-term fluctuations.

As noted previously, it is expected that maximum contrast
in the ultrasonographic image will occur when the rate of
change of average brightness intensity reaches its maximum
value. Thus, we need to calculate the first derivative of the
smoothed average intensity curve in order to obtain its rate
of change (Fig. 4.b). Consequently, the point where this
gradient begins to decline, corresponding to the maximal
rate of change, can be obtained by finding where the second
derivative of the smoothed brightness intensity is zero.

The graph in Fig. 4.b shows that, in this example, the
gradient of the smoothed brightness intensity curve shows
a maximum, i.e. stops increasing, at approximately frame
300. In order to locate this point more precisely, the second
derivative has to be computed (i.e. the “gradient of the
gradient”) (Fig. 4.c). Note that both the first and second
derivatives are smoothed using the same moving average
approach as applied to the brightness intensity curve. At
the first point where this second derivative, excluding the
first 80 frames as noted above, becomes negative (again
at approximately frame 300), the rate of increase of the
smoothed average brightness intensity begins to decline.
However, according to the radiologist consulted, the optimal
frame for initialising the lesion in this video sequence

currently being studied would be frame 336. It should be
mentioned that the video sequence has been acquired with
a frame rate of 25 frames per second and also that the
optimal frame given by the radiologist is obtained by visual
inspection. This discrepancy corresponds to approximately
1.4 seconds of real time footage.

In order to locate this point of maximum gradient pre-
cisely we have to compare the second derivative values at
time t and t + 1. However, in order to allow for rounding
errors and any possibility of residual noise in the smoothed
signals, we do not just require a simple decrease between
these gradient values, but instead impose a thresholded
decrease. Therefore, we accept that the smoothed gradient
has genuinely started to decrease when:

gt+1 < α · gt (2)

where gt and gt+1 are the gradients at time t and t + 1,
respectively and α is a thresholding factor, less than but close
to 1. The optimal value of α can be determined empirically.
The first frame t for which (2) is satisfied, excluding any
artefacts at the very start of the video sequence, is considered
to be the frame where the maximum contrast between the
FLL and the parenchyma occurs.

Specifically for the currently examined example video
sequence, (2) is satisfied at frame t = 340, whereas the
radiologist’s choice of optimal frame was t = 336, giving a
difference of 4 frames, corresponding to 160 milliseconds.
This time difference is less than the variation between
choices of different but experienced CEUS operators and
is therefore considered insignificant. As shown in Fig. 5,
there are no obvious visible differences between the frame
selected by the radiologist and the frame automatically
selected by our method.

B. Method 2 - Spread of pixel intensities

In this approach, we attempt to find the frame of maxi-
mum contrast directly from the “spread” of the brightness
intensities of all the pixels (fine-grained resolution). The
complete range (i.e. the difference between the maximum
and the minimum values) of the brightness intensities over a
given frame will tend to be exaggerated due to the influence
of a small number of excessively bright and dark pixels,
which are irrelevant to the initialisation. In order to avoid
this artefact, we investigate using the standard deviation
(SD) - see (3) - and inter-quartile range (IQR) of the pixel
intensities within the ultrasonographic image of each frame
as methods of computing a useful quantitative measure of
“contrast”. We propose to locate the frame of best contrast,
and hence optimal for FLL initialisation, by studying how
these quantities change over time.

SD =

√√√√√ 1

W ·H
∑

1≤i≤W
1≤j≤H

(pi,j − p̄)2 (3)
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Figure 6. Dynamic behaviour of brightness intensity values. (a) depicts
data obtained from Method 2 and the noisy fluctuations are clearly depicted,
whereas (b) depicts the data as obtained from Method 3 and (c) depicts the
same results as (b) after a moving average filter has been applied to them.
The noisy fluctuations are less extreme in graph (b) than in graph (a), due
to the averaging over block of pixels (spatial averaging) but still require
smoothing over time.

where W and H are the width and the height of the
workspace in pixels, respectively, pi,j is the brightness
intensity of the pixel at location (i, j) in the current frame
and p̄ is the mean brightness intensity of this frame, defined
as:

p̄ =
1

W ·H
∑

1≤i≤W
1≤j≤H

pi,j (4)

The IQR is defined to be the difference in brightness
intensity values between the first and third quartiles, where
these are defined to be the points in an ordered list of pixel
brightness intensities such that 25% of all the pixels within

the workspace are darker than the first quartile and 25% are
brighter than the third quartile.

An example of this is shown in Fig. 8. If the graphs of SD
and/or IQR showed a clear maximum at a particular frame,
then this was selected as the optimal one for initialising the
FLL. Otherwise, if these quantities continued to increase
throughout the video sequence, the point where the SD (or
equivalently IQR) reached a fraction β of its final value was
chosen as the best candidate frame for the initialisation.

SDbestFrame = β · SDfinal (5)

where β is close to, but less than, 1. The best value of β
was found empirically. In none of the cases studied did the
SD and/or the IQR decrease through the early part of the
sequence (i.e. they were either continuously increasing or
showed a clear maximum).

C. Method 3 - Spread of neighbourhood average intensities

An identified limitation of the aforementioned method
(Method 2 - Spread of pixel intensities) is that it does not take
any account of the location of pixels. In order to find the best
frame for initialising the FLL, what is really desirable is to
obtain high contrast between different regions of the image
- in particular to distinguish between the lesion and the
directly surrounding tissue (the parenchyma). In an attempt
to achieve this, the workspace is subdivided into local
neighbourhoods (“blocks”) of n×n pixels, where n is small
compared with the overall size of the image, and the pixel
intensities averaged over that neighbourhood. This provides
a coarse-grained resolution of the workspace. Similarly to
the aforementioned method (Method 2), the SD and IQR of
all the neighbourhood average brightness intensities over the
workspace are computed for each frame as measures of the
contrast between different regions, and how these quantities
change over time is investigated. This was carried out for
various neighbourhood sizes (i.e. different values of n).

III. EXPERIMENTS

A. Data

The proposed methods are applied and evaluated on real
clinical data from seventeen case studies of patients in
similar physical condition, provided by the Radiology &
Imaging Research Centre of the University of Athens, in
Greece. Each case study includes at least one CEUS video
sequence (of between 84 and 491 frames) with resolution
768× 576 pixels and no compression applied. This dataset
included examples from the four major FLL “signals” (i.e.
unipolar hyper-enhanced, bipolar hyper-enhanced, unipolar
hypo-enhanced, bipolar hypo-enhanced) as shown in Fig. 1.

B. Equipment used

A Siemens ACUSON Sequoia C512 system was used
for the data acquisition, equipped with low-frequency 6C2
convex Transducer (2-6 MHz) capturing at a frame rate of



25 frames per second. The contrast medium used was the
second generation contrast medium, sulphur hexafluoride
microbubbles (SonoVue, Bracco Diagnostics, SpA Milan),
which allows excellent depiction of the FLL vascularity and
perfusion [7]. Specific acquisition parameters for each case
are unknown, as they were set by the radiologist separately
for each patient.

C. Methods of Evaluation and Choice of Parameters

To evaluate the results, the mean absolute error (MAE)
across the seventeen different cases is calculated for each
method, as:

MAE =
1

K

∑
1≤k≤K

|xk − x(GS)
k | (6)

where K is the number of cases, xk is the value obtained
for case k by the proposed methods and x

(GS)
k is the

radiologist’s “gold standard” value for case k. The “gold
standard” refers to the radiologist’s decision on the choice
of the optimal frame for the initialisation of the FLL region,
which has been based on visual inspection of the CEUS
video sequence for each case.

Through experimentation, the optimal choice of the
thresholding factor α in (2) was found to be 0.98. Similarly,
the optimal value of the thresholding fraction, β in (5), for
the SD was found by experiment to be 0.95. Results for
this, and also based on the IQR using both β = 0.90 and
β = 0.95, are shown in Tables II, III and Fig. 8. However,
from these tables it is clear that the results based on the IQR
were generally inferior to those obtained using the SD. Table
I shows the optimal frame obtained for each case using each
of the three methods, where the SD approach was employed
for each of methods 2 and 3.

Neighbourhood sizes of n = 4, 8, and 16 were used in
“Method 3”. The results obtained for n = 4 were almost
identical to those from “Method 2”. This was as expected
since averaging over such a small neighbourhood (just 16
pixels) would not result in much spatial differentiation.
Furthermore, although values of n = 8 (neighbourhood of
64 pixels) and n = 16 (neighbourhood of 256 pixels) yielded
similar results in terms of the accuracy of the optimal frame
selected, we choose n = 16 as the optimal neighbourhood
size since this proved to be more time-efficient than n = 8.

D. Results

The results obtained, after the application of the three
proposed methods to the provided dataset, are compared
with the radiologist’s “gold standard” in Table I. In Tables
II, III and Fig. 8 we show the summary statistics for the
errors (relative to this “gold standard”) for each method,
including the variants of methods 2 and 3 which employed
the IQR rather than the SD. The differences between the
radiologist’s “gold standard” and the automated decisions
of the proposed methods might seem to be rather large

Table I
THE OPTIMAL FRAMES. COMPARISON BETWEEN THE AUTOMATED

DECISION OF THE PROPOSED METHODS AND THE RADIOLOGIST’S GOLD
STANDARD. THE ERROR IN MILLISECONDS IS ALSO PROVIDED.

Gold Standard Method 1 Method 2 Method 3
Case Frame Frame Error(ms) Frame Error(ms) Frame Error(ms)

1 336 340 -160 344 -320 330 +240
2 260 290 -1200 428 -6720 284 -960
3 315 280 +1400 390 -3000 387 -2880
4 247 257 -400 372 -5000 158 +3560
5 162 180 -720 175 -520 176 -560
6 276 237 +1560 523 -9880 290 -560
7 98 120 -880 197 -3960 129 -1240
8 87 83 +160 110 -920 110 -920
9 139 114 +1000 127 +480 126 +520

10 156 202 -1840 294 -5520 161 -200
11 343 342 +40 423 -3200 422 -3160
12 471 476 -200 476 -200 476 -200
13 216 188 +1120 281 -2600 280 -2560
14 332 65 +10680 218 +4560 214 +4720
15 130 114 +640 144 -560 155 -1000
16 399 354 +1800 434 -1400 375 +960
17 395 290 +4200 413 -720 371 +960

Positive values in Error (ms), indicate that the methods gave an earlier frame, and
negative values indicate that the methods gave a later frame, in the CEUS video
sequence, than specified by the “gold standard”. The distribution of positive and
negative errors for each method indicates that none shows a systematic error.

Table II
MEAN AND MEDIAN ERRORS IN FRAMES AND MILLISECONDS FOR

EACH METHOD.

MEAN ERROR MEDIAN ERROR
(frames) (ms) (frames) (ms)

Method 1 +25.29 +1012 +4 +160
Method 2
(SD 95%)

-56.06 -2242 -35 -1400

Method 2
(IQR 90%)

+73.29 +2931 +58 +2320

Method 2
(IQR 95%)

+50.59 +2023 +65 +2600

Method 3
(SD 95%)

-4.82 -192 -14 -560

Method 3
(IQR 90%)

+14.75 +590 +36 +1440

Method 3
(IQR 95%)

-36 -1440 -48 -1920

Positive values indicate that the methods gave an earlier frame, and negative values
indicate that the methods gave a later frame in the CEUS video sequence, than
specified by the “gold standard”.

Table III
SUMMARY RESULTS: MEAN ABSOLUTE ERROR (MAE), IN FRAMES

AND MILLISECONDS FOR EACH METHOD.

MEAN ABSOLUTE ERROR
(frames) (ms)

Method 1 41.18 1647
Method 2 (SD 95%) 72.88 2915
Method 2 (IQR 90%) 87.76 3510
Method 2 (IQR 95%) 71.88 2875
Method 3 (SD 95%) 37.06 1482
Method 3 (IQR 90%) 58.35 2334
Method 3 (IQR 95%) 82.88 3315

The MAE values for each method are graphically depicted in Fig. 8.
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Figure 7. Visual comparison of the radiologist’s decision, on the choice of the optimal frame for the initialisation of the FLL region, with the outcome
of the proposed methods. The figures shown are the actual video frames from the CEUS video sequences of seven of our case studies. The first column
depicts the index of the cases shown, corresponding to the values in Table I. The second column depicts the “gold standard”, whilst the rest (i.e. columns
3-5) depict the decision of the proposed methods.



Figure 8. Summary Results: Mean Absolute Error (MAE) for each method.

- typically up to around 75 frames (3 seconds of the
video’s acquisition). However it should be noted that there
is substantial uncertainty in the precise choice of optimal
frame by visual inspection, even by an experienced CEUS
operator. Fig. 7 shows the actual video frames, as selected
by each of our methods and the “gold standard” decision of
the radiologist’s choice on the optimal frame for initialising
the region of the FLL, from the CEUS video sequences for
seven of our case studies, providing a visual comparison of
the outcomes. Our results are currently being assessed by
the radiologist who provided the original data.

The particularly poor results for case 14 are quite notable
in Table I, as well as in Fig. 7. In this example (case 14) ,
the contrast over the whole workspace - and even between
the FLL and the parenchyma - shows an early peak around
frames 150-160, then remains relatively constant over quite a
large part of the video sequence. However, there are dramatic
changes occurring in the sequence around frames 240-270
(i.e. dispersion in depth), resulting in a temporary reduction
in contrast. The contrast subsequently improves, depicting a
secondary peak around frame 340, which is much closer to
the radiologist’s choice.

IV. CONCLUSIONS AND FUTURE WORK

Based on the aforementioned results, the proposed meth-
ods 1 and 3 (particularly using SD rather than IQR) select the
optimal frames for initialising the FLL region in reasonable
agreement with the choices of the radiologist, bearing in
mind that any human judgement by visual inspection will
necessarily involve some uncertainty. We conclude that the
process of finding the optimal frame for initialising the
FLL region can be automated, saving effort on the part
of the radiologist and potentially contributing to improving
the accuracy and time-efficiency of the whole diagnostic
process. However, we observed that the early part of each
of the sequences used in our methods contains artefacts not
useful to the diagnosis and hence it is essential that the
radiologist should specify an initial and a final frame for

each sequence before it is processed.
As noted previously, the work described in this paper is

part of a wider project, which aims to fully automate the
analysis of CEUS video sequences and assist the radiologist
in the diagnosis procedure. The next stages of our work
will relate to automatically initialising the region of the FLL
and from their temporal profile, subsequently obtained, and
further study of their enrichment patterns [7], classify these
lesions into the appropriate category, as shown in Fig. 1.
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