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The fifth most common type of cancer 
worldwide is a focal liver lesion (FLL) [1], 
which constitutes 70-90% of primary 
liver cancer cases [2], with over 500,000 

incidents per year [3]. FLLs refer to specific type of 
abnormalities of the liver, depicted as focal/ellipsoidal 
regions [4]. Thus, any 2D slice of an FLL, results in 
an approximately elliptical shape. FLLs are solid or 
liquid-containing nodules foreign to the normal liver 
anatomy, and can be classified as either relatively 
harmless lesions (benign), or progressively worsening 
lesions that can potentially result in death (malignant).

The potential for the early distinction between a 
malignant and a benign FLL is of significant importance 
as, if a malignancy (~25% of FLLs assessed in the UK [5]) 
is diagnosed sufficiently early, there is an enhanced 
possibility of non-surgical therapeutic intervention 
and healing. On the other hand, early diagnosis of a 
benignity (~75% of FLLs assessed in the UK [5]), leads to 
the earlier discharge of the patient [4] due to the FLL 
not requiring treatment, and hence leads to reduced 
distress to patients and their families [6], as well as 
reduced healthcare costs [5].

Currently, the accepted diagnostic pathway 
followed as the standard care protocol for liver 
imaging starts with an initial appointment, where a 
conventional (B-mode) US scan is made [4]. During 
such a scan, potential FLL candidates may be detected 
but cannot be classified as benign or malignant, due 

to low spatial resolution and low signal-to-noise ratio. 
As a consequence of such an inconclusive scan, the 
patient is referred for additional follow-up screening, 
using a contrast-enhanced (CE) technique, based on 
either computed tomography (i.e. CE-CT), or magnetic-
resonance imaging (CE-MRI), or ultrasound (CEUS).

Contrast-enhanced ultrasound
Contrast-Enhanced Ultrasound (CEUS) is a technique 
based on medical ultrasound but which requires the 
intravenous injection of non-nephrotoxic contrast-
enhancing material [7]. This material offers a brightness 
enhancement to the apparent blood flow, and 
thus increases the contrast between the FLL and its 
surrounding healthy tissue, i.e. the parenchyma.

CEUS has gained acceptance for use in the 
detection and characterisation of very small FLLs, 
leading to rapid and appropriate clinical care [1, 
8, 9], as it can often be carried out during the 
same appointment as the initial US scan, which 
can be critical for effective treatment. According 
to radiological studies, CEUS shows a significant 
improvement in sensitivity and specificity over CT 
and MRI [10], and its diagnostic accuracy for the 
evaluation of malignant FLLs is higher than 95% [11].  
Furthermore, it is recognised as the most cost-efficient 
imaging solution for classifying an FLL as benign or 
malignant [5,10], since it is easy to perform, and uses 
portable and relatively low cost equipment that 
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Figure 1. Example of the brightness intensity changes over the duration of the three phases of a CEUS examination. The blue and the red curves 
describe the average intensity of the regions of the FLL and the parenchyma, respectively. The current example illustrates the behaviour of a lesion 
with hyper-enhancing behaviour during the arterial phase (intensity increase within FLL prior to parenchyma) and hypo-enhancing behaviour during 
the late phase (intensity decrease in the FLL prior to the parenchyma). Such behaviour is typical for a malignant FLL.
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allows its presence in every clinic and even at 
the bedside. Additionally, the philosophy of 
the use of CEUS is bound with the European 
campaign “EuroSafe Imaging” [12] to reduce 
the radiation burden on the population from 
medical imaging – particularly for child and 
young adult patients – and is consistent 
with the ‘ALARA’ (“As Low As Reasonably 
Achievable”) principle for radiation dosage [13].

A CEUS liver scan is divided into three 
different phases over time (Figure 1), whose 
durations vary mainly depending on the 
physiopathology of the patient’s liver and heart. 
Typically, the data acquired during such a scan 
comprise a video sequence covering the whole 
first (arterial) phase and part of the second 
(portal venous) phase, as well as at least one 
static image of the third (late) phase. Recording 
the brightness intensity changes for different 
tissues during a CEUS scan allows estimation of 
the perfusion dynamics of these tissues. These 
perfusion curves lead to the differentiation of 
the nature of the tissues [10]. Specifically, the 
difference of perfusion between an FLL and 
its surrounding parenchyma over time allows 
for the distinction between a benign and a 
malignant FLL due to their different dynamic 
behaviour (Figure 2).

Current Clinical Practice
The current methodology for evaluating 
the behaviour of FLLs is the offline manual 
assessment and interpretation of CEUS 
examination data. Although CEUS is such an 
effective technique, interpretation of its data 

is a highly time-consuming process, requires 
extensive input and a high-level of expertise 
from specially trained radiologists and still 
leads to subjective (operator-dependent) 
results, which are prone to misinterpretation 
and human error [10]. Currently, such 
assessments are performed through a series of 
tasks, namely, i) identification of a reference 
frame in the video sequence where the FLL is 
sufficiently represented and well-distinguished 
from the parenchyma, ii) manual annotation 
of the FLL boundaries in this reference frame, 
iii) observation of the temporal dynamics of 
the perfusion (i.e. dynamic behaviour) of the 
tissues, iv) classification of the FLL as benign or 
malignant, and the characterisation of its exact 
nature, e.g. Adenoma, Cyst, Haemangioma.

Proposed solutions
Several contributions have been made 
over recent years towards understanding, 
quantifying and automating the assessment 
of the dynamic behaviour of FLLs, especially 
when observed using CEUS. The fields of 
image feature extraction, image segmentation, 
motion estimation, statistical analysis and 
machine learning have been investigated 
to develop novel non-invasive automated 
computational algorithms, able to improve the 
current clinical practice, and support clinicians 
make their evaluations faster, more easily, 
more objectively and with greater confidence, 
whilst helping to improve the repeatability 
and reproducibility of the assessment of such 
CEUS examination data.

Firstly, we proposed a deterministic fully 
automatic method [14], for the first task of 
identifying the optimal reference frame, 
where an FLL is well-distinguished from the 
parenchyma and well-represented in the 
image plane (Figure 3). The method is based 
on the hypothesis that the optimal reference 
frame for initialising an FLL occurs when high 
contrast between the regions of the FLL and 
the parenchyma is obtained. The method 
assesses the root mean square contrast [15] 
of the brightness intensity values of local 
neighbourhoods within the ultrasonographic 
image (US mask), for each frame, and suggests 
as the reference frame, the one where this 
measure is maximised, hence have similar 
contrast to the frame suggested by radiologists.

Subsequently, we proposed a fast semi-
automatic solution for identifying the FLL 
boundaries in a reference frame of a CEUS 
recording, initialised only by the sole input of a 
single seed point [16,17]. An initial approximation 
of the FLL is estimated by an improved active 
ellipse model that uses rectangular force 
functions to iteratively contract and expand. 
A novel boundary refinement method is 
then applied to iteratively classify boundary 
pixels rapidly, according to a probabilistic 
model, which outperforms existing iterative 
approaches, such as the fastest Level Set 
method [18], in terms of both accuracy and 
computational efficiency.

Furthermore, the assessment of the 
haemodynamic status of an FLL, during of a 
CEUS recording, requires the compensation of 
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Figure 2. Schematic examples of the four major vascular signatures with their corresponding “signals”, for FLL classification. In the first two columns of graphs, the blue curves depict the temporal 
profile of the brightness intensity of the FLL, while the red curves show the corresponding profile for the parenchyma. In the second pair of columns, the FLL “signals” are depicted, which are 
derived by subtracting the red curve from the blue curve. The dashed line is used for the period between the end of the acquired video (solid curve) and the acquisition of the static image in the 
late phase (the final single dot). Finally the last two columns on the right depict the corresponding classifications and potential characterisations into different medical conditions, respectively.
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the relevant motion between the transducer 
and the patient to allow for the accurate 
quantification of the perfusion of the 
FLL and the parenchyma, leading to the 
classification of FLLs as benign or malignant. 
Reviewing the literature reveals approaches 
that use manual annotations of ROIs in all 
acquired frames [19-21], others that carefully 
selecting videos with minimal apparent 
motion [22,23], and others accounting for 
automated motion correction [24-26]. We 
proposed methods for accurate automated 
motion correction [27-30] and performed 
an extensive analysis of various direct [31] 
and feature-based [32] methods for motion 
compensation. Compact and Real-time 
Descriptors (CARD) [33] were found to be 
the optimal method for compensating for 
motion in CEUS recordings [34].

Finally, we proposed a deterministic fully 
automatic methodology for distinguishing 
between potentially malignant and benign 
cases, by holistically assessing the global 
spatial configuration of local variations 
of perfusion curves within the US mask 
[35]. The only input for this distinction is a 
video sequence entailing at least the entire 
duration of the arterial phase. Regions of 
potential malignancy within the US mask 
are also localised in [35], by exploiting the 
perfusion dynamics of different tissues. 
This is achieved by extracting a novel 
low-dimensional feature vector that 
encompasses information of a region’s 
dynamic behaviour during the provided 
video sequence and combines it with the 
region’s location information, to identify and 
group together neighbouring regions with 
almost identical dynamic behaviour through 
clustering. Providing a prompt response 
to the radiologist, by identifying areas of 

potential interest (e.g. malignancies) and 
characterising specific areas selected by the 
radiologist, is expected to further increase 
the confidence of the radiologists when 
making a diagnosis.

Potential clinical contributions
To summarise the effectiveness of the 
proposed algorithms in a meaningful way, 
the solutions proposed by our group [14,16,17, 
27-30,34,35] have all been quantitatively 
evaluated on real clinical data from a 
retrospective multi-centre study, leading 
to the potential of them being applied in 
the current diagnostic pathway of standard 
care. Specifically, the obtained results show 
comparable performance to those achieved 
through the manual process, but with more 
objectivity and fewer interactions, i.e. the 
proposed methods can be carried out faster 
and more easily.

Specifically, through the proposed 
fully automatic pipelines for both the 
initialisation of the FLL assessment [14, 16, 
17], the early diagnosis of patients with 
benign FLLs and the objective localisation 
of potential malignancies [35], an improved 
repeatability and reproducibility of 
the assessment of the examination is 
achieved, compared to the current manual 
pathway, implying greater confidence on 
the reliability of the diagnostic decision. 
Furthermore, lower healthcare costs [5] 
and reduced distress to the patients and 
their families [6], can be achieved through 
the deterministic fully automatic early 
diagnosis and discharge of patients with 
benign FLLs. Providing a prompt response to 
the radiologist, by automatically localising 
potential malignancies may increase the 
radiologist’s awareness of such regions 

within the US mask, that they might 
otherwise have missed, or even assist in 
the training of inexperienced radiologists. 
Monitoring, and quantification of, the 
dynamic behaviour of FLLs during CEUS 
video sequences can enable radiologists 
to further investigate specific parameters 
of groups of lesions. Finally, all of these 
proposed solutions help towards reducing 
the time required by radiologists to assess 
FLLs offline in CEUS data from several 
minutes to a few seconds, and reduce their 
effort accordingly.

Future directions
The issue of the FLL’s apparent motion 
across the 2D image plane, instead of 
within, is still an unsolved problem. The 
solution of this would allow for a more 
refined accurate quantification of the FLL’s 
perfusion, and could form the basis for 
characterising FLLs to their exact nature, 
e.g. Adenoma. Machine learning algorithms 
can be employed to model the behaviour 
of individual FLLs, either in the spatial or in 
the temporal domain, by assessing either 
the enrichment patterns of the FLL’s micro-
vasculature [8,10], or by parameterising the 
FLLs’ perfusion curves (Figure 4), respectively.

Clinical expertise provided from King’s 
College Hospital in London, UK, and 
Evgenidion Hospital in Athens, Greece, will 
assess the effectiveness and acceptability 
of the proposed methods from the 
perspective of their clinical value.

Conclusions
Offline assessment of CEUS examination 
data is essential for diagnosis, staging, 
treatment planning, and follow-up of 
FLLs. This article has discussed research 

Figure 3. Examples of FLLs. (A) and (B) illustrate the haemodynamic behaviour of a hypo- and a hyper-enhancing FLL, which are the behaviours of benign and potentially malignant FLLs, respec-
tively. The example frames show the behaviour observed in the whole liver from the time that the injected contrast medium reaches the liver (first frame) until the stabilisation of the intensi-
ty increase (last frame), including the reference frame (at time t), as chosen by the method proposed in [24]. Note that the appearance of the FLL is essentially the same in frames immediately 
around the reference frame (±1sec), but the FLL may be indistinguishable from the parenchyma at the beginning, or at the end, of this sequence.

A

B

ONMJ15.indd   60 08/05/2015   16:01



Volume 10 Issue 2 • May/June 2015	 61

conducted on computer-aided solutions 
for the assessment, quantification and 
evaluation of FLLs in CEUS screening 
recordings, in an attempt to improve 
healthcare by bringing closer together the 
computational capability to medical experts 
and their anatomical knowledge.

Quantitative analysis of all results on real 
clinical data from a multi-centre study was 
used to evaluate the level of confidence of 

the decision of the proposed solutions and 
demonstrated the value of these methods 
in a diverse dataset acquired using the 
current standard care protocol.

The proposed methods have contributed 
to both expanding previous work and 
opening up new research directions towards 
the automation of image interpretation 
tasks routinely performed manually by 
radiologists in the clinical environment. 

The aim is to assist clinicians assess and 
evaluate FLLs faster, more easily and more 
objectively, whilst producing results less 
dependent on human initialisation and 
therefore increasing confidence in their 
diagnostic decisions. Application of the 
proposed methods in clinical practice 
may assist in the creation of standardised 
criteria for quantification in clinical imaging, 
avoiding operator-dependent results, and 
therefore aid in the widespread utilisation 
of CEUS, even in non-specialist centres and 
clinics, leading to minimal turnaround times, 
lower costs to healthcare services and less 
patient distress.
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Figure 4. Visualisation of the perfusion parameters typical-
ly used by radiologists to describe different aspects of a 
ROI’s perfusion and to determine its functional features. 
The ‘Peak Intensity’ (PI) is the highest intensity value of 
the perfusion curve. The ‘Time to Peak Intensity’ (TPI) 
denotes the duration from time zero (the start of the 
sequence) to the time when PI is reached. The ‘Regional 
Blood Flow’ (RBF) is estimated from the integral of the 
curve from time zero until TPI, whereas the ‘Regional 
Blood Volume’ (RBV) is estimated from the integral of the 
curve, from TPI until the complete wash-out. The ‘Mean 
Transit Time’ (MTT) is the interval from the time that the 
intensity first reaches 50% of the PI during its increase 
until it again reaches 50% of the PI during its decrease.
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