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We propose a class dependent factor analysis model (CDFA) which can be used in the general face

recognition task under certain variations. The model utilizes the class information in a supervised

manner to define a separate manifold for each class. Inside each manifold, a mixture of Gaussians is

designated to handle the variation. The proposed model learns the system parameters in a probabilistic

framework, allowing a Bayesian decision model. A manifold embedding technique is incorporated to

handle the nonlinearity introduced by the variation; hence, a novel connection between manifold

learning and probabilistic generative models is proposed. CDFA has better recognition accuracy and

scalability over a classical factor analysis model. Experimental evaluations on the face recognition

under changing illumination conditions and facial expressions indicate the ability of the proposed

model to handle different types of variation. The achieved recognition rates are comparable to the

state-of-art results, while it is also shown that the recognition rate does not decrease critically as the

number of gallery identities increases.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The face recognition domain still needs robust and scalable
algorithms to handle real life variations like pose, illumination,
and facial expressions. Although various approaches have been
studied by many authors, there is not a generic method which can
deal with different variations with a promising scalability.

In this paper, we propose a novel object recognition frame-
work called class dependent factor analysis model (CDFA) to
increase the scalability of a recognition system and to overcome
certain variations that may be present during the data acquisition.
The primary goal is to develop a generic method for the face
recognition problem under a selected type of variation. Combin-
ing different types of variation is another challenge that is left to
be investigated as a future work.

The method is initially developed to handle illumination and
expression changes; however, the viewpoint change can also be
analyzed with the same approach after preprocessing or feature
point selection steps as introduced in [1–3]. Such requirements
for the pose variation are inevitable due to the high nonlinearity
of image formation with changing view points.
1.1. The classical approaches and their limitations

Many popular face recognition algorithms use holistic approaches
in conjunction with appearance-based models [4]. Appearance-based
ll rights reserved.
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models utilize the actual pixel intensities, and this fact alone is
enough to damage effective signal–noise ratio since individual pixels
tend to change dramatically under certain variations like illumination
and facial expression. A common approach to handle such variations
is to define a lower dimensional subspace in which the useful
statistics is more definite compared to the noise. As an example,
Principal Component Analysis (PCA) [5] is used to define a subspace
where the variance on principal axes is stimulated.

When the utilized appearance-based method depends on a
dimensionality reduction technique, factor analysis happens to be
the main actor. Factor analysis is a well known and commonly
used approach in the data analysis community. Although its early
development traces to the beginning of the century, it is still one
of the most popular multivariate statistical analysis tools in
applied science domain [6]. Its main formulation is a linear
generative model

x¼Wcþe , ð1Þ

where the weighted average of lower dimensional factors, c, is
taken to generate a higher dimensional signal, x. In this view,
factor analysis can be seen as a dimensionality reduction techni-
que when the inverse mapping of W is considered.

Factor analysis is a powerful tool, especially when it is used for
the dimensionality reduction. The classification is achieved in the
lower dimensional subspace instead of the noisy higher dimen-
sional pixel space. The very same idea is exploited in PCA
and Linear Discriminant Analysis (LDA). They both have the
same underlying generative model but different ways to get the
mapping W.
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Fig. 1. Illustration of individual manifolds of different identities. Any point on the manifold corresponds to a variation type. The intrinsic geometry is common among

different manifolds. This behavior results in the same variation type for same coordinate values.
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The first limitation of such approaches arises with the common

subspace constraint: the mapping, W, is common for all classes.
The discrimination among classes is achieved by the deployment
of the class centroids on the coordinate system. Such a modeling
is insufficient when the effect of the variation is more dominant
than the class characteristics. In such a case, the coordinates of
the points are mostly determined by the variation type. A well
known example is the fact that the images of different people
under same illumination lie closer in such subspaces compared to
the images of a single person under different illumination.

Embeddings like PCA can solve problems caused by statistically
well behaving noise terms. However, under a problematic variation,
individual or interclass statistics may be altered dramatically pre-
venting a useful discrimination. An elegant idea is to distinguish the
real signal (identity of the image) and the noise caused by variation
(differences imposed by illumination). In LDA [7], this idea is
exploited by controlling the inter-class and intra-class variances.
However, it keeps the same generative model and still tries to assign
a unique coordinate vector, c, for different samples of the same class.

In the real life, recognition and classification tasks usually deal
with variations that result in nonlinear data geometries. Therefore,
one requires more sophisticated mathematical tools to investi-
gate [8]. While the most of the methods use a linearity constraint
over the data geometry, relatively new techniques called ‘‘manifold
learning’’ have been developed to eliminate the linearity constraints
[9–11]. The main idea behind the manifold learning is to utilize local
geodesic distances instead of global Euclidean distances.

1.2. Overview of the CDFA framework

The design of the framework starts with the reformulation of
the factor analysis model under a variation such as illumination.
An observation xik, which belongs to the class i and has a variation
k, is generated by the model

xik ¼Wickþek: ð2Þ

With this formulation, we introduce individual factor loadings,
Wi, for each class i, instead of a common loading matrix for all
classes. However, the factors, ck (coordinates on the lower
dimensional subspace), are common for all classes and related
to the variation type. The geometric interpretation yields different
manifolds for different classes while all manifolds have exactly
same intrinsic geometries. Inside two manifolds, points having
same local coordinates correspond to the same variation type.
Please cite this article as: B. Tunc- , et al., Class dependent factor ana
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This interpretation is illustrated in Fig. 1. Several important
aspects of this formulation should be mentioned:
�

lysi
Each class has its own subspace/manifold. Therefore, discrimi-
nation between classes is performed by the distance to the
manifold instead of the distance within the manifold. Inside
each individual manifold, a mixture of Gaussians may be
defined to model the variation.

�
 Coordinate vectors, ck, represent the variation type instead of

class identities. Thus, the determination of the variation value
is explicitly provided.

�
 Class identities are stored as factor loadings in matrix Wi. The

variation does not condition the structure of the matrix since it
is already modeled by the factors.

�
 The intrinsic dimensionality of manifolds is fixed once determined

during the bootstrap. Nevertheless, the actual dimensionality in
which the recognition is performed is n since the manifolds are
embedded in Rn, where n is the number of pixels in images.

�
 A manifold learning step is employed to derive the reduced

dimensional coordinates, ck. Thus, a connection between
manifold learning and probabilistic generative models is
proposed. This can be seen as an initial step towards nonlinear
probabilistic models.

The difference between individualized and common factor
loadings can be observed in Fig. 2. The proposed method intro-
duces basis sets which are specific to their corresponding classes.
With this setting, one can synthesize different images of a person
under different conditions like changing light source positions.

A critical feature of the method is its generic structure. We do
not employ any physical or geometrical attributes of the con-
cerned variation. Hence, any variation lying on a smooth manifold
can be modeled by the proposed method.
2. Connections to previous works

The proposed method has an analogous formulation with the
probabilistic interpretation of PCA [12,13]. Both approaches tackle
with finding lower dimensional representations of observations
under some prior assumptions. The main difference is that the
proposed method derives class specific coordinates and accounts
for the variation explicitly.
s and its application to face recognition, Pattern Recognition
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Fig. 2. Demonstration of the semantic difference between (a) a common basis set generated by a classical approach (SVD was used for this example) and (b) class

dependent basis sets generated by the proposed approach. Each basis set includes the class information intrinsically. For this example, images under changing illumination

conditions were used.

Table 1
Detailed algorithm of the CDFA.

Bootstrap: Given a bootstrap database, X¼ fxikg

� Calculate the lower dimensional coordinates, ck by (10)

� For each pixel location

J Calculate the empirical covariance matrix, Xe by (A.5)

J Calculate l and s2
k using (21) and (22)

Training: Given gallery observations, G¼ fxgkg, for each identity g

� Calculate the lower dimensional coordinates, ck by (29)

� Recover wg for each pixel location by (26)

� Construct the matrix Wg so that it has vectors wg as its rows

� Apply Gram–Schmidt orthonormalization to the columns of Wg

Testing: Given a probe observation xpk ,

� Calculate dg for each gallery identity g using (30)

� Select the identity with the minimum distance
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Similar frameworks were introduced in [14,15]. Both works dealt
with individualized subspaces. The actual improvement over [14] is
that CDFA has a more generic structure which can be used for the
general classification problem whereas only illumination was con-
sidered in [14]. The authors of [14] used spherical harmonics to
calculate class specific bases. The results are limited to illumination
as the spherical harmonics cannot be generalized to other types of
variation. Having a complete probabilistic framework is our advan-
tage over the work done in [15].

The authors of [16] developed a cone model to solve the face
recognition problem with varying illumination. They argued that the
set of images of an object in a fixed pose but under all possible
illumination define a convex cone. The approach requires a few
images of each gallery identity to estimate its surface geometry and
albedo map. That model illustrates the real power of the subspace
analysis; nevertheless, it is again constrained to be useful only for
illumination and may not work with a single observation.

Other techniques such as [17–21] suffer from being useful only
for the specific variation type that they have been developed for. We
try to propose a method which can be used for different variations.

A comparable work was performed in [1]. Authors defined a
common subspace for class identities yet different transformation
matrices (factor loadings) for different poses. Keeping the class
information inside the coordinate vectors inherits an important
disadvantage of classical subspace methods: as the number of
classes increases, the subspace dimensions also need to be
increased to sustain the scalability. The same idea was used in
[22] again for pose variations.

The probabilistic approaches for the discriminative subspace
analysis were proposed in [23,24]. Both solutions were based on
LDA with different settings. In [23], authors defined a three layer
decision process. At the initial layer, identity is drawn from a
common Gaussian distribution. Then, at the second layer a
perturbation is applied by another Gaussian. Finally, the third
layer defines a projection from the latent space to the observation
space. In [24], the model introduced in [1] was improved by
employing different projections from the latent space to the
observation space: one for the between-individual subspace and
one for the within-individual subspace. Both models still assume
common subspaces for different identities.

Compressive sensing and sparse representation were utilized
in [25,26]. The subspace analysis was performed on the basis of
compressive sensing theory. Both techniques can be used for
different types of variation. We use these methods in benchmarks
against facial expressions.
3. Formulation of the CDFA framework

The proposed method can be summarized as a two step
probabilistic framework. The first step is a bootstrap phase in which
Please cite this article as: B. Tunc- , et al., Class dependent factor ana
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useful statistics are calculated. A manifold embedding technique is
employed at this step to define the geometry of the subspace. The
second step includes regular training and testing tasks. The frame-
work starts with analyzing the underlying manifold. A bootstrap
database, consisting of identities with several observations (people
with several images), is collected for this purpose. The identities of
the bootstrap database are different than the ones to be recognized;
any suitable database can be selected.

To simplify the calculations, Eq. (2) may be rewritten in an
element-wise form as

xik ¼wT
i ckþEk, ð3Þ

where xik is an element of the observation vector, xik. Similarly,
the vector wi is the corresponding row of the matrix Wi. Again, Ek

is the corresponding element of the error vector, ek. Such an
element-wise formulation ignores the correlations among pixels
while introducing new correlations among columns of Wi. Unlike
the classical factor analysis model, the factors are treated as
deterministic variables which are calculated during the manifold
learning step. Moreover, Gaussian priors are defined on the vector
w and the constant Ek as

pðwÞ � Gðl,X�1
Þ,

pðEkÞ � Gð0,s2
k Þ: ð4Þ

The proposed method is detailed through the following sec-
tions and summarized in Table 1 at the end of Section 3. For all
formulations a single variation such as illumination is considered
to be effective.
3.1. Manifold learning: bootstrap

The aim of this step is to define a mapping, M, from the high
dimensional image space to the lower dimensional variation
lysis and its application to face recognition, Pattern Recognition
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space as in

ck ¼MT xk: ð5Þ

The term variation space is chosen to emphasize that the
coordinates of the subspace are related to the variation. Locality
Preserving Projection (LPP) [9] is employed as a manifold embed-
ding technique. This technique tries to preserve the intrinsic
geometry and the local structure of the underlying manifold.
The error function of LPP can be interpreted as a summation over
distances between close data points as in

e¼
X

k

X
j

ðck�cjÞ
2Skj, ð6Þ

where ck is the one-dimensional representation of the data point,
xk. The relation between xk and ck is defined as ck ¼mT xk, where
the vector m is a column of the mapping M. The coefficients, Skj,
represent the similarity index. They may be defined as

Skj ¼
expð�Jxk�xjJ

2=tÞ Jxk�xjJ
2oE,

0 otherwise,

(
ð7Þ

where E defines the radius of the local neighborhood. The cost
function (6) can be rewritten as

e¼ 1

2

X
k

X
j

ðck�cjÞ
2Skj

¼
1

2

X
k

X
j

ðmT xk�mT xjÞ
2Skj

¼mT AðD�SÞAT m

¼mT ALAT m, ð8Þ

where the matrix A has data points, xi, as its columns. D is a
diagonal matrix, and its entries are column sums of S. L¼D�S is the
Laplacian matrix. By introducing a constraint as mT ADAT m¼ 1, the
minimization of (8) is transformed to the generalized eigenvalue
problem

ALAT m¼ lADAT m: ð9Þ

Then, the eigenvectors corresponding to minimum eigenvalues
are selected to construct a linear mapping, M.

During our experiments, the following settings are used: a
bootstrap database, fxikg, is collected for the concerned variation
type. Each identity i has several images corresponding to different
values of the variation. The distances between images are calcu-
lated in a supervised manner. In other words, the similarity
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Fig. 3. Embedding results of LPP: (a) 2D embedding of the bootstrap database with chan

conditions. These coordinates are invariant to the identity.

Please cite this article as: B. Tunc- , et al., Class dependent factor ana
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indexes in (7) are calculated based on variation labels. Details
can be gathered from [27,9].

Using such a supervised approach draws an upper bound to
the dimensionality of the manifold. Since the rank of the general-
ized eigenvalue problem in (9) is determined by the number of
discretized variation labels (different types of illumination), the
dimensionality is at most the number of different variation labels
in the bootstrap database.

An example embedding of the bootstrap database into two
dimensional subspace is illustrated in Fig. 3(a). A further aver-
aging step is performed to discard the effect of the identity
completely. As shown in Fig. 3(b), averages over identities are
calculated to represent each variation type.

The averaging is applied as follows: for each observation, xik,
the reduced dimensional coordinates, cik, are calculated by
cik ¼MT xik. Then, for each variation label, k, the average over all
identities is taken by

ck ¼
1

N

XN

i ¼ 1

cik, ð10Þ

where N is the total number of identities in the bootstrap
database.

3.2. Learning factors and other statistics: bootstrap

In this stage, the parameters of prior distributions defined in
(4) are calculated using the bootstrap database, X¼ fxikg. Con-
sidering the element-wise formulation (3) and priors, the condi-
tional and the marginal distributions over the variable xk are

pðxk9w,ckÞ � GðwT ck,s2
k Þ,

pðxkÞ ¼

Z
pðxk9w,ckÞpðwÞ dw: ð11Þ

Both the prior and the conditional distributions are Gaussians
in (11), and this makes the resulting marginal distribution, pðxkÞ,
to be another Gaussian. By employing Eq. (3), we do not need to
solve this integral form analytically since the mean value and the
variance can be easily evaluated by

E½xk� ¼ E½wT ckþEk� ¼ lT ck,

E½ðxk�E½xk�Þ
2
� ¼ cT

kXckþs2
k : ð12Þ

These two parameters are sufficient to define the marginal as

pðxkÞ � GðlT ck,cT
kXckþs2

k Þ: ð13Þ
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The bootstrap database can be used at this point to calculate
the unknown parameters, X, l, and s2

k by maximizing the like-
lihoods. The Likelihood to be maximized is the empirical like-
lihood of the observed points, xik. Assuming i.i.d. observations, the
total log likelihood over observations is

ln pðX9l,X,s2
k Þ ¼

XN

i

XK

k

ln pðxikÞ, ð14Þ

where the upper bounds N and K denote the number of identities
and different values of the variation in the bootstrap gallery,
respectively. After omitting the constant terms which are not
related to the unknown parameters, the cost functional becomes

J ¼�
XN

i

XK

k

lnðcT
kXckþs2

k Þ�
XN

i

XK

k

ðxik�lT ckÞ
2

cT
kXckþs2

k

: ð15Þ

In order to determine the unknowns which minimize the cost
functional, we simply take partial derivatives with respect to
those and set them equal to zero. By this way, a system of
nonlinear equations is obtained as

s2
k ¼

1

N

XN

i

ðxik�lT ckÞ
2
�cT

kXck, ð16Þ

N
XK

k

ckcT
k

cT
kXckþs2

k

¼
XK

k

ckcT
k

ðcT
kXckþs2

k Þ
2

XN

i

ðxik�lT ckÞ
2, ð17Þ

XK

k

ckcT
k

cT
kXckþs2

k

 !
l¼

1

N

XN

i

XK

k

xikck

cT
kXckþs2

k

: ð18Þ

The solution for (16) is also a solution for (17), thus the system
is rank deficient. It has infinite solutions, and we cannot assume
any optimality. To overcome this problem, one may calculate the
empirical covariance matrix Xe (see Appendix A). It is expected
that the empirical covariance leads to an optimal solution. Our
experiments on changing illumination conditions and facial
expressions indicate that this assumption holds for real life
scenarios. Finally, two useful equations emerge as

s2
k ¼

1

N

XN

i

ðxik�lT ckÞ
2
�cT

kXeck, ð19Þ

XK

k

ckcT
k

cT
kXeckþs2

k

 !
l¼

1

N

XN

i

XK

k

xikck

cT
kXeckþs2

k

: ð20Þ

Analytic solution to these nonlinear equations is not trivial.
Thus, a fixed point iteration is employed to approximate the
solution. Let zk ¼ cT

kXckþs2
k and a(t) indicates the value of the

variable a at tth iteration step, then

XK

k

ckcT
k

zkðtÞ

 !
lðtÞ ¼

1

N

XN

i

XK

k

xikck

zkðtÞ
, ð21Þ

zkðtþ1Þ ¼
1

N

XN

i

ðxik�lðtÞT ckÞ
2: ð22Þ

With an appropriate initial guess, this procedure converges
fast. Two example solutions for l corresponding to different
variation types are illustrated in Fig. 4. For all experiments, we
Fig. 4. Mean parameter, l, is illustrated for two different var

Please cite this article as: B. Tunc- , et al., Class dependent factor ana
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have used zkð1Þ ¼ 1 as the initialization and stopped the iteration
when 9zkðtþ1Þ�zkðtÞ9r10�6. These calculations must be repeated
for each pixel location as the element-wise formulation is
utilized.

3.3. Recovering class factors: training

Having the conditional probability pðxgk9wg ,ckÞ and the prior
probability pðwgÞ defined in the bootstrap, the MAP estimation
can be applied to recover the factor loadings of a gallery identity
g, given an observation xgk by

wMAP ¼ arg max
wg

pðwg9xgk,ckÞ:

Using Bayes’ rule we get

wMAP ¼ arg max
wg

pðxgk9wg ,ckÞ � pðwgÞ,

where the constant term pðxgkÞ is omitted. Then, MAP estimate is

wMAP ¼ arg max
wg

GðwT
g ck,s2

k Þ � Gðm,X�1
Þ: ð23Þ

If the log probabilities are considered and the constant terms are
omitted, the cost functional equals to

E ¼ �
1

2

xgk�wT
g ck

s2
k

 !2

�
1

2
ðwg�lÞTX�1

ðwg�lÞ

0
@

1
A: ð24Þ

By taking the derivative with respect to wg and equating to zero,
we get

2

s2
k

ðxgk�wT
g ckÞck ¼ 2X�1

ðwg�lÞ: ð25Þ

The MAP estimate for wg is the solution to the set of linear
equations [14]

Awg ¼ b, ð26Þ

where

A¼
1

s2
k

ckcT
kþX�1, b¼

xgk

s2
k

ckþX�1l: ð27Þ

In this formulation, a single observation is enough for each
class while having more points will increase the reliability of the
recovery. When multiple observations for an identity g exist, the
coefficient matrix and the right-hand side vector are determined
by summations over observations as in

A¼
X

k

1

s2
k

ckcT
kþX�1, b¼

X
k

xgk

s2
k

ckþX�1l: ð28Þ

Factors, ck, are assumed to be calculated by the mapping M of
LPP. First, the identity dependent factors, cgk, are calculated by

cgk ¼MT xgk: ð29Þ

Then, the identity invariant factors are obtained by finding the
closest (in terms of Euclidean distance) ck that is calculated by
(10) during the bootstrap. Instead, one may take the average of k

nearest ck to increase the ability of handling novel values. During
our tests, we took the average of three nearest ck.
iation types: (a) for illumination and (b) for expression.
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3.4. Classification of novel points: testing

Given a novel observation xpk, the class label can be deter-
mined by assigning the class with the maximum likelihood
pðxpk9Wg ,ckÞ.

Another approach which is used during our experiments is to
minimize the distance between the novel point and its synthe-
sized counterparts (distance to manifold) as

dg ¼ Jxpk�xgkJ, ð30Þ

where xgk ¼WgWT
g xpk is calculated for each gallery identity, g.

As a third choice, posterior probabilities may be used to decide the
identity of the novel point. The decision is made by selecting the
maximum posterior pðWg9xpk,ckÞ. Bayes’ rule transforms the posterior
into the multiplication of the likelihood and the prior: pðWg9xpk,ckÞ ¼

pðxpk9Wg ,ckÞ � pðWgÞ (the constant denominator pðxpkÞ is omitted).
This approach can be very useful in large scale real life scenarios as it
lets us to employ priors over gallery identities.

The second approach was used for all of our experiments. For
this approach, the orthonormality is assumed for matrices Wg

whereas no such constraint was considered during the recovery.
Therefore, Gram–Schmidt orthonormalization process is employed
after solving (26). The detailed algorithm of the CDFA is given
in Table 1.
4. Probabilistic interpretation of the CDFA framework

Beside the geometrical interpretation of the generative model
described in Section 1.2, another probabilistic interpretation is
given here, regarding the formulation of the CDFA framework. The
marginal distribution pðxkÞ specifies a mixture of Gaussians in
which Gaussians are determined by the variation label k. Each
Gaussian is characterized by parameters lT ck and cT

kXckþs2
k .

Hence, the variation defines the shape of each Gaussian.
Initially, the geometry of the manifold consisting of this

mixture does not depend on the identities, but only on the mean
identity. Thus, the manifold can be considered as a template that
will be customized after selection of an identity. When an identity
is drawn from the prior distribution pðwÞ, it re-defines the
mixture by the conditional distributions pðxk9w,ckÞ. This proce-
dure also eliminates a considerable amount of uncertainty in each
Fig. 5. Illustration of the governing distributions: (a) a template manifold is defined b

drawn form the prior distribution, pðwÞ.
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Gaussian as the variance decreases to s2 from cT
kXckþs2

k . Whole
process is illustrated in Fig. 5.

CDFA is defined as a two-layer decision process. At the first
layer, class identities are drawn from a prior distribution. The
second layer defines a mixture of Gaussians depending on a
template manifold characterized by pðxkÞ, and the conditional
distributions pðxk9w,ckÞ. The assignment of observations to each
Gaussian is achieved by the manifold embedding. In this view, the
manifold embedding can be considered as a clustering scheme.
5. Experimental evaluations

Several experiments were conducted to explore two important
aspects of the CDFA framework: (1) the recognition performance
against extreme variations and (2) scalability in relatively large
databases. For the first evaluation, we selected databases with
extreme variations. Nevertheless, the sizes of such databases are
usually small, including at most 30–40 identities. To analyze the
real life performance of the method, a second group of experi-
ments was performed on another set of databases with moderate
variations but large number of identities.

The main characteristic of the method is its ability to be used
for different types of variation. This claim was verified by different
experiments under different types of variation. Two types of variation
were used during tests: (1) changing illumination and (2) changing
facial expressions.

5.1. Tuning the bootstrap parameters

Each test begins with the manifold embedding on the selected
bootstrap database to decide the geometrical features of the
manifold. One parameter that should be determined is the
dimension of the underlying manifold. The manifold learning
technique LPP relies on the solution of a generalized eigenvalue
problem; therefore, the spectrum of eigenvalues may help with
determining the dimension. However, using an evaluation dataset
is a better choice since the characteristics of the variation may
prevent a meaningful spectrum analysis.

As indicated in Section 3.1, the intrinsic dimensionality is
bounded by the number of different variation labels present in the
bootstrap database. For instance, when using Multi-PIE [28] as the
y the marginal distribution, pðxkÞ. (b) This template is customized by the identity
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Fig. 6. Recognition rates on evaluation sets with different manifold dimensions under (a) illumination and (b) facial expression changes. Yale and Multi-PIE means that the

bootstrap set is from Yale and the evaluation set is from Multi-PIE.

Table 2
Face recognition rates for Yale B Database. Performances of the other methods

were taken from [14].

Methods Subsets 1–2 Subset 3 Subset 4

Correlation 100 76.7 26.4

Eigenfaces 100 74.2 24.3

Linear subspaces 100 100 85

Cones-attached 100 100 91.4

Cones-cast 100 100 100

9PL 100 100 97.2

Spherical harmonics 100 99.7 96.9

CDFA 100 99.2 95

Table 3
Recognition error rates for Yale B Database with multiple gallery images.

# Images Subsets 1–2 Subset 3 Subset 4

1 0.0 0.8 5.0

2 0.0 0.2 1.4

3 0.0 0.1 0.6

4 0.0 0.0 0.3

5 0.0 0.0 0.1

6 0.0 0.0 0.0
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bootstrap database, the dimensionality is bounded by 20 since
there are 20 different illumination conditions. However, this does
not mean that the recognition is performed in a 20 dimensional
subspace. This value represents the number of basis vectors to
span the variation subspace of each identity. It is only related to
the range of the generative model, i.e. how the method deals with
novel variations. The recognition is performed by the point-to-
manifold measure which is calculated in the original observation
space Rn, where n is the number of pixels of the input images.

Certain properties of the manifolds like dimensionality are
totally determined by the bootstrap database. This is a clear and
an understandable behavior since the bootstrap database reflects
the way that the operative variation is modeled. The best practice
is to use a bootstrap database that is the most compatible with
the testing requirements.

The effect of the manifold dimension is given in Fig. 6. For two
types of variation (illumination and facial expression), evaluation
datasets were collected. Scenarios with different bootstrap and
evaluation sets are demonstrated to grasp the characteristics
completely. All tests were performed with evaluation sets con-
taining 50 identities. A single image was selected as the gallery
and all remaining images were used as probes. Those identities
collected for the evaluation sets were not used during the further
experiments to reflect a real life behavior.

Experiments indicate that the method behaves similarly in terms
of dimensionality even if the bootstrap database is changed. The
results are comparable when the dimension is fixed among different
evaluation sets. Moreover, slight changes in dimension do not affect
the recognition performance, considerably.

5.2. Classification performance against illumination

Tests with changing illumination conditions were performed
with Yale B Database [16]. This database includes 10 identities
with 45 different illumination conditions. The database can be
split into four subsets according to the illumination direction,
which also highlights the difficulty of the recognition.

The Extended Yale Face Database [29] was used as the boot-
strap database. This database is an extension of the original Yale B
with 28 identities which are not present in the original database.
At the bootstrap phase, a subset of 41 illumination types out of 45
was used due to several corrupted images. Hence, the gallery and
probe images had novel variations which were not present in the
bootstrap database.

The size of images used in the experiments was 100�90. As a
preprocessing step, all images were normalized so that they have
zero mean and unit variance. The dimension of the manifold was
fixed as nine. We performed 19 tests, and the average was taken
as the final performance. For each test, a single image from subset
Please cite this article as: B. Tunc- , et al., Class dependent factor ana
(2012), http://dx.doi.org/10.1016/j.patcog.2012.05.017
1 or subset 2 was selected as the gallery image, and all remaining
images were used as probes. In other words, 440 recognition
attempts were performed for each test, resulting in 8360 recogni-
tion attempts in total. The recognition rates with this configura-
tion are given in Table 2.

Recognition rates are very promising considering the moderate
requirements for the bootstrap and the training. CDFA is trained
by a single image for each identity unlike methods Cones-attached,
Cones-cast, and 9PL which need number of images between 5 and
9. Compared to the spherical harmonics, CDFA is a more generic
approach since it is not related to the physical aspects of the
variation. The behavior of the CDFA with increasing number of
gallery images is demonstrated in Table 3. Random images from
subsets 1 and 2 are selected as gallery images for each test. The
increase in the recognition performance makes the proposed
method more comparable to other methods.

5.3. Classification performance against facial expressions

As a second set of experiments, the performance of the CDFA
with facial expressions was analyzed. For this purpose, three
databases were selected: Cohn-Kanade AU-Coded facial expression
database (CKþ) [30], Japanese female facial expression database
(JAFFE) [31], and CMU AMP face expression database [32].
lysis and its application to face recognition, Pattern Recognition
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CKþ is a collection of video sequences starting with a neutral
pose and ending with a peak expression. This database is used as
a common bootstrap gallery. Inside each sequence, four images
were sampled. Including one additional neutral image, at most 25
different images were collected for each identity (24 images
corresponding to six expression and one neutral image). The
manifold dimension was determined to be 20.

Two groups of tests were performed using databases JAFFE and
CMU AMP. JAFFE includes 213 images of 10 Japanese women with
number of facial expressions varying between 20 and 23. These
expressions can be very different from the expressions which
exist in the bootstrap database. Therefore, we also showed the
ability of the method with handling novel variations. CMU AMP
have 13 identities with 75 different expressions. Expressions
present in this database are extremely severe as they also cause
slight pose changes along with changes in face geometries.

CDFA is compared against two state-of-art techniques CS [25]
and SRC [26]. To make fair comparisons, we followed the same
scenarios with the compared methods, and the gallery selection
procedure and the structure of random tests were kept same.
Image size was set to be 32�32 since the compared methods had
selected to use such a small image size. For each identity, several
gallery images were selected randomly, and the remaining images
Table 4
Average face recognition rates on JAFFE database. Forty trials with randomly

chosen gallery images were performed for each row.

# Gallery

images

Recognition

attempts

CDFA CS SRC PCA LPP

2 7720 93.04 89.94 90.1 85.84 83.84

3 7320 94.50 93.22 92.1 89.1 89.32

4 6920 96.17 95.12 95.13 91.62 91.33

5 6520 96.33 96.12 96.01 93.54 93.87

Table 5
Average face recognition rates on CMU AMP database. Ten trials with randomly

chosen gallery images were performed for each row.

# Gallery images Recognition attempts CDFA CS SRC PCA LPP

4 9230 99.92 98.95 98.9 99.6 99.91

5 9100 100 99.91 99.8 99.66 99.71

6 8970 99.99 99.97 99.75 99.68 99.84

7 8840 100 100 99.74 99.71 99.75

8 8710 100 100 99.87 99.89 99.87

9 8580 100 100 100 99.94 99.97

10 8450 100 100 99.49 99.85 99.95
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75

80

85

90

95

100

Fig. 7. (a) Behavior of LDA against the illumination with increasing number of identit

Multi-PIE, and with a bootstrap drawn from Yale. (b) Behavior of CDFA against illumina

Yale and the evaluation set is from Multi-PIE.

Please cite this article as: B. Tunc- , et al., Class dependent factor ana
(2012), http://dx.doi.org/10.1016/j.patcog.2012.05.017
were used as probes. Images were used after zero mean-unit

variance normalization. Results of two classical subspace techni-
ques, PCA and LPP, are also analyzed to understand the marginal
improvements. The transformation matrices for PCA and LPP are
obtained using the CKþ bootstrap database. LPP is trained in k NN
mode with distances being calculated by the heat kernel.
Tables 4 and 5 show test results for JAFFE and CMU AMP. Results
for CS and SRC were taken from [25]. To give an impression of the
significance of the presented results, the second columns list the
number of actual recognition attempts for each experiment. These
values are simply calculated as (the number of test images � the
number of random trials).

CDFA steadily outperforms others for both databases. How-
ever, the main intention here is to highlight that the same
framework can be utilized for different types of variation without
any modification in the base configuration. Indeed, these data-
bases happened to be trivial although they include severe variations.
Even a classical approach like PCA can achieve high recognition
rates on them.
5.4. Scalability

Further experiments were performed to examine the scalabil-
ity of the proposed method. Two relatively large databases were
selected for the testing: CMU Multi-PIE Database [28] and CAS-
PEAL Database [33]. Both databases consist of images of more
than 200 people. CAS-PEAL was used for the evaluation against
facial expressions and Multi-PIE for the illumination. Multi-PIE
includes 20 different illumination conditions, and CAS-PEAL
serves five facial expressions for each identity.

The behavior of a classical subspace method against the
increasing number of gallery identities is demonstrated in
Fig. 7(a). LDA against illumination was used for the demonstra-
tion. All tests were performed on Multi-PIE with two random
images of each identity being selected as the gallery and the
remaining 18 images as probes.

LDA can perform steadily in terms of recognition rate with its
usual configuration. The subspace is re-constructed with each
new identity, and the subspace dimension becomes ðni�1Þ where
ni is the number identities. However, as new identities are
introduced, LDA needs to be re-trained to get a promising
recognition rate. This behavior is illustrated in Fig. 7(a) with
‘‘No bootstrap’’ label. One may eliminate such a training require-
ment using a bootstrap database. In this new setting, the subspace
is constructed only once using the bootstrap database, yet the
recognition rate decreases as the number of gallery identities is
0 20 40 60 80 100 120 140 160 180 200
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ies. Three scenarios were tried: with no bootstrap, with a bootstrap drawn from
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Fig. 8. Recognition performance of different methods on (a) Multi-PIE illumination database and (b) CAS-PEAL expression database. Values in parentheses show the

number of gallery images.
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increased. Moreover, different bootstrap databases may result in
significantly different recognition rates.

CDFA framework can improve the scalability as shown in
Fig. 7(b). The method was tested with several scenarios both for
illumination and facial expressions. When Yale1 or CKþ was used
as the bootstrap database, all settings like manifold dimension-
ality were kept same as the ones in Sections 5.2 and 5.3. We
observe that the final recognition rates are not affected signifi-
cantly as bootstrap databases are switched. The largest perfor-
mance difference caused by changing the bootstrap database was
between 1% and 2%.

The results in Fig. 7(b) also suggest that it is possible to fix the
template manifold for a certain type of variation since same
bootstrap database can be used in different tests: CKþ was
employed successfully in tests with CAS-PEAL, JAFFE, and CMU
AMP while the Yale Database is compatible both for Multi-PIE and
Yale itself.

Fig. 8 gives recognition rates of several methods with increas-
ing number of identities in the gallery. CDFA was compared with
PCA [5], LDA [7], and Tied Factor Analysis (TFA) [1] since they
share very common aspects with CDFA, in terms of subspace
analysis. The method in [1] was initially developed to handle the
pose variation; however, the authors proposed the algorithm as a
generic factor analysis framework just like CDFA. Multi-PIE and
CAS-PEAL were used for testing against illumination and facial
expression, respectively. To provide a fair comparison, a common
bootstrap database with 50 identities was collected to learn the
subspace parameters for all methods. For tests with Multi-PIE, the
bootstrap includes 1000 images while this value is 250 for the
tests with CAS-PEAL. Subspace dimensions were optimized indi-
vidually for each method.

For both tests, bootstrap and the training/testing images were
drawn from the same databases. Therefore, the manifold dimen-
sion was four for tests with CAS-PEAL since there are five different
expressions in database, and the upper bound is limited by the
number of expressions. In both sets of experiments, the image
size was 100�90. Images were normalized with zero mean-unit

variance normalization.
For CDFA and TFA, a single gallery image was selected and all

remaining images were used as probes. Then, for a test having N

gallery identities, 19�N recognition attempts were performed for
Multi-PIE and 4�N recognition attempts were performed for
1 There are two different Yale Databases used during tests: Yale B Database

[16] and Extended Yale Face Database [29]. However, when a common name ‘Yale’

is mentioned, it means that an augmented database which is established by

concatenating two is used.
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CAS-PEAL. These attempts were repeated for each random gallery
image selection, and the averages were noted.

The recognition rates tend to decrease with other methods
whereas CDFA performs steadily as the number of identities
increases. This fact is depicted in Fig. 8.

5.5. Discussions on experimental results

We performed several experiments to analyze the perfor-
mance of the proposed method against different variation types
and with relatively large databases. In both cases, the results are
very promising.

Several advantages of the method can be summarized as
follows: (1) different types of variation that lie on smooth
manifolds can be handled by the method, (2) the scalability of
the classical factor analysis is improved by a class dependent
scheme, (3) the decision process is fully probabilistic, and poster-
ior probabilities can be utilized for large scale and domain specific
real life applications by incorporating priors on the identities,
(4) bootstrap has less time complexity compared to 3D rendering
approaches, and finally (5) a single observation for each identity is
sufficient to perform reliable recognition while a way to favor
more images is also introduced.

The main drawback of the proposed framework is its space
complexity. For each gallery identity, the whole subspace is
defined. Compared to classical methods, which store a low
dimensional vector for each identity, storing a high dimensional
matrix requires more space. Moreover, the testing has relatively
higher time complexity since at least two matrix–vector products
are required (MT xp and Wgck) to make decision while the classical
factor analysis only performs a norm calculation. When speaking
in terms of wall clock time, the training and the testing per image
take approximately 0.3 s and 40 ms, respectively, on a regular PC
(Intel Core 2 Duo 2.2 GHz and 3 GB RAM). These values are valid
on a development environment. The real life performance is
better with approximately 20 ms for testing on the same PC.
6. Conclusions

A linear generative model was developed to improve the general
factor analysis framework. The main novelty is the complete prob-
abilistic structure that individualizes manifold charts resulting in a
class dependent design. Modeling nonlinear variations like illumina-
tion and facial expression is achieved by incorporating a manifold
embedding technique to obtain a linear representation of the effective
variation. This is not a surprising result considering the fact that such
variations can be modeled linearly on some geometries. For instance,
lysis and its application to face recognition, Pattern Recognition
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illumination can be modeled as a linear combination of spherical
harmonics on a unit sphere.

We propose a probabilistic framework that can be employed in
general classification problems when a problematic variation is
exhibited on class samples. The only assumption which is used
implicitly is that the variation can be modeled on a smooth
manifold. If the nonlinear embedding fails, the resulting lower
dimensional coordinates may disturb the final performance.

The initial results are very promising indicating the potential
of the proposed framework as a replacement to regular subspace
analysis methods. The proposed approach defines a novel con-
nection between the manifold embedding and the probabilistic
models.

Combining different variations is left as a future work. The first
step towards this goal may be using factor tensors instead of
factor matrices.
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Appendix A. Approximating the covariance matrix of W
distribution

To calculate the covariance matrix of the distribution defined
on the factor loadings, W, a way similar to the one proposed in
[15] is followed. The factor loadings, W, are considered as a basis
set of the variation subspace. Therefore, factors, ck, are assumed
to be coordinates, i.e. linear combination coefficients.

Lets assume that we have K images of an identity i in the
bootstrap database. Then the total reconstruction error for the
identity i is

E ¼
XK

k ¼ 1

Jxik�WickJ¼
XK

k ¼ 1

Jxik�wi1ck1�wi2ck2� � � � �wincknJ,

ðA:1Þ

where wij indicates jth column of the matrix Wi, and ckj is jth
element of vector ck.

Normalization constraints JwijJ¼ 1 are not introduced, since
the scaling factors, ckj, are already known and fixed. Thus,
relaxations on the norms of the vectors are required to assure a
global minimum. Similarly, orthogonality is not considered.

The optimization problem can be restated as a trace mini-
mization to simplify calculations as

J ¼ Tr½XT
�c1wT

1�c2wT
2� � � � �cnwT

n�: ðA:2Þ

Here the notation is changed slightly. The matrix X has the
vector xik as it kth column. The vector cj is the collection of
constants ckj. The index i of vectors wij is dropped for the clarity.
By rewriting the equation we get

J ¼ TrðXXT
Þ�2cT

1XT w1� � � � �2cT
nXT wn

þcT
1c1wT

1w1þ2cT
1c2wT

1w2þ � � � þ2cT
1cnwT

1wn

þ2cT
2c1wT

2w1þcT
2c2wT

2w2þ � � � þ2cT
2cnwT

2wn

þ � � �

þ2cT
nc1wT

nw1þ � � � þcT
ncnwT

nwn: ðA:3Þ
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Derivatives with respect to each basis vector yield the follow-
ing set of linear equations:

�Xc1þcT
1c1w1þ � � � þcT

1cnwn ¼ 0,

^

�XcnþcT
nc1w1þ � � � þcT

ncnwn ¼ 0: ðA:4Þ

In the matrix form, we have

cT
1c1 cT

1c2 � � � cT
1cn

cT
2c1 cT

2c2 � � � cT
2cn

^ ^ & ^

cT
nc1 cT

nc2 � � � cT
ncn

2
66664

3
77775

w1

w2

^

wn

2
6664

3
7775¼

Xc1

Xc2

^

Xcn

2
6664

3
7775:

The size of the system is relatively small depending on the
dimension of the subspace. The rank of the coefficient matrix is
usually n provided that a linearly independent set of vectors, ci,
exists. Hence, there is a unique solution for the problem. As the
complete basis set, Wi, of each identity i is calculated, the
covariance matrix for the distribution pðwÞ can be estimated by
the empirical formula

Xe ¼
1

N

XN

i ¼ 1

ðwi�wÞðwi�wÞT , ðA:5Þ

where w is the mean value. One should be careful with this
notation. Here, the form defined in (3) is used. Therefore, the
vector wi is a row (not a column) of the matrix Wi. After
calculating the matrices Wi for all identities of the bootstrap
gallery, the covariance matrices corresponding to different rows
are calculated independently.
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