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Abstract

We propose a class dependent factor analysis model (CDF&Ehvelan be used in the general face recognition task undeicer
variations. The model utilizes the class information in pesuised manner to define a separate manifold for each clasile
each manifold, a mixture of Gaussians is designated to bahdlvariation. The proposed model learns the system p&zesiie
a probabilistic framework, allowing a Bayesian decisiondelo A manifold embedding technique is incorporated to hartige
nonlinearity introduced by the variation; hence, a novelr@ztion between manifold learning and probabilistic gatiee models
is proposed. CDFA has better recognition accuracy andhtiglaover a classical factor analysis model. Experiméataluations
on the face recognition under changing illumination cdndi and facial expressions indicate the ability of the pemal model to
handle diferent types of variation. The achieved recognition ratescamparable to the state-of-art results, while it is alsmsh
that the recognition rate does not decrease critically asitimber of gallery identities increases.
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1. Introduction A common approach to handle such variations is to define a
lower dimensional subspace in which the useful statisties a

The face recognition domain still needs robust and scalablgore definite compared to the noise. As an example, Princi-
algorithms to handle real life variations like pose, illumaiion,  pal Component Analysis (PCA) [5] is used to define a subspace
and facial expressions. Although various approaches hes®e b where the variance on principal axes is stimulated.
studied by many authors, there is not a generic method which When the utilized appearance-based method depends on a
can deal with dferent variations with a promising scalability. ~ dimensionality reduction technique, factor analysis leayspto

In this paper, we propose a novel object recognition framebe the main actor. Factor analysis is a well known and com-
work called class dependent factor analysis model (CDFA) tenonly used approach in the data analysis community. Althoug
increase the scalability of a recognition system and toawree  its early development traces to the beginning of the cenitry
certain variations that may be present during the data acquis still one of the most popular multivariate statisticahbysis
sition. The primary goal is to develope a generic method fottools in applied science domain [6]. Its main formulatiorais
the face recognition problem under a selected type of waniat linear generative model
Combining diferent types of variation is another challenge that
is left to be investigated as a future work. To this extend, th x=Wc+e, (1)
grammatical structure of the classical factor analysis ehoxl
redesigned to enhance its semantic setup.

The method is initially developed to handle illuminatiordan

expression changes; however, the viewpoint change camalso nique when the inverse manpina\f is considered
analyzed with the same approach after preprocessing arréeat q o ppIng . L
Factor analysis is a powerful tool, especially when it isclise

point selection steps as introduced in [1, 2, 3]. Such requirf the di ionality reduction. The classification isiaghd
ments for the pose variation are inevitable due to the high no for the dimensionality reduction. The classification isiaw

linearity of image formation with changing view points. in the lower dimensional subspace instead of the noisy highe
dimensional pixel space. The very same idea is exploited in

PCA and Linear Discriminant Analysis (LDA). They both have
the same underlying generative model bifatent ways to get
Many popular face recognition algorithms use holistic ap-the mappingV.
proaches in conjunction with appearence-based models [4]. The first limitation of such approaches arises with ¢ben-
Appearance-based models utilize the actual pixel intissit mon subspaceonstraint: The mappingV, is common for all
and this fact alone is enough to damage tffeative signal- classes. The discrimination among classes is achievedeby th
noise ratio since individual pixels tend to change dramadlfic  deployment of the class centroids on the coordinate system.
under certain variations like illumination and facial eegsion.  Such a modeling is inglicient when the #ect of the varia-

where the weighted average of lower dimensional facmris,
taken to generate a higher dimensional sigralln this view,
factor analysis can be seen as a dimensionality reductaim te

1.1. The Classical Approaches And Their Limitations
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Figure 1: lllustration of individual manifolds of fierent identities. Any point on the manifold corresponds tawation type. The intrinsic geometry is common
among dfferent manifolds. This behavior results in the same variatipa for same coordinate values.

tion is more dominant than the class characteristics. It sucand related to the variation type. The geometric interpicgia
a case, the coordinates of the points are mostly determiped lyields diferent manifolds for dierent classes while all mani-
the variation type. A well known example is the fact that thefolds have exactly same intrinsic geometries. Inside twa-ma
images of diterent people under same illumination lie closerifolds, points having same local coordinates corresportti¢o
in such subspaces compared to the images of a single perseame variation type. This interpretation is illustratedrigure
under diferent illumination. 1. Several important aspects of this formulation should ba-m

Embeddings like PCA can solve problems caused by stationed:
tistically well behaving noise terms. However, under a prob
lematic variation, individual or interclass statisticsyrze al-
tered dramatically preventing a useful discrimination. éle-
gant idea is to distinguish the real signal (identity of tmage)
and the noise caused by variationffdiences imposed by il-
lumination). In LDA [7], this idea is exploited by contraily
the inter-class and intra-class variances. However, ip&diee
same generative model and still tries to assign a uniquedeoor
nate vectorg, for different samples of the same class.

In the real life, recognition and classification tasks ulsual
deal with variations that result in nonlinear data georastri e Class identities are stored as factor loadings in maffix
Therefore, one requires more sophisticated mathematiot t The variation does not condition the structure of the matrix
to investigate [8]. While the most of the methods use a linear-  since it is already modeled by the factors.
ity constraint over the data geometry, relatively new téghes S _ ) _ o
called "Manifold Learning” have been developed to eliméat ~ ® The intrinsic dimensionality of manifolds is fixed once de-

e Each class has its own subspacanifold. Therefore, dis-
crimination between classes is performed by the distance
to the manifold instead of the distance within the manifold.
Inside each individual manifold, a mixture of Gaussians
may be defined to model the variation.

e Coordinate vectorsy, represent the variation type instead
of class identities. Thus, the determination of the vaorati
value is explicitly provided.

the linearity constraints [9, 10, 11]. The main idea behirehm termined during the bootstrap. Nevertheless, the actual di
ifold learning is to utilize local geodesic distances iastef mensionality in which the recognition is performednis
global Euclidean distances. since the manifolds are embedded®®, wheren is the

number of pixels in images.

1.2. Overview of the CDFA Framework A manifold learning step is employed to derive the reduced

The design of the framework starts with the reformulation of ~ dimensional coordinatesy. Thus, a connection between
the factor analysis model under a variation such as illumina ~ manifold learning and probabilistic generative models is

tion. An observation;, which belongs to the classind has a proposed. This can be seen as an initial step towards non-
variationk, is generated by the model linear probabilistic models.
Xik = WiCy + €. ) The diference between individualized and common factor

loadings can be observed in Figure 2. The proposed method
With this formulation, we introduce individual factor load introduces basis sets which are specific to their correspgnd
ings, Wi, for each class, instead of a common loading ma- classes. With this setting, one can synthesifiedint images
trix for all classes. However, the factors, (coordinates on of a person under fierent conditions like changing light source
the lower dimensional subspace), are common for all classqsositions.
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A comparable work was performed in [1]. Authors defined
a common subspace for class identities ydiedént transfor-
mation matrices (factor loadings) forftirent poses. Keeping
the class information inside the coordinate vectors infienn
important disadvantage of classical subspace methods$eas t
number of classes increases, the subspace dimensiongealo n
to be increased to sustain the scalability. The same idea was
used in [22] again for pose variations.

The probabilistic approaches for the discriminative salogp
analysis were proposed in [23] and [24]. Both solutions were
- based on LDA with dierent settings. In [23], authors defined

() a three layer decision process. At the initial layer, idgns
drawn from a common Gaussian distribution. Then, at the sec-
ond layer a perturbation is applied by another Gaussiamlligin

Figure 2: Demonstration of the semantidfeience between (a) a common the third layer defines a projection from the latent spacédo t

basis set generated by a cla_ssical approach (SVD was usétif@xample)  gphservation space. In [24], the model introduced in [1] VIS

and (b) class dependent basis sets generated by the pragmsedich. Each . L

basis set includes the class information intrinsically. this example, images proved by emp'f)y'”g dierent projections from the_ Iat.ent Space

under changing illumination conditions were used. to the observation space: one for the between-individuial su
space and one for the within-individual subspace. Both nsode
still assume common subspaces fdfatient identities.

A critical feature of the method is its generic structure. We Compressive sensing and sparse representation wereditiliz
do not employ any physical or geometrical attributes of hve-c  in [25] and [26]. The subspace analysis was performed on the
cerned variation. Hence, any variation lying on a smooth-manbasis of compressive sensing theory. Both techniques can be
ifold can be modeled by the proposed method. used for diferent types of variation. We use these methods in
benchmarks against facial expressions.

EERETEE

2. Connections to Previous Works .
3. Mathematical Background

The proposed method has an analogous formulation with the The proposed method can be summarized as a two step prob-
probabilistic interpretation of PCA [12, 13]. Both apprbas  abilistic framework. The first step is a bootstrap phase iitivh
tackle with finding lower dimensional representations @b useful statistics are calculated. A manifold embeddindptec
vations under some prior assumptions. The maffecénce is nique is employed at this step to define the geometry of the
that the proposed method derives class specific coordiaates subspace. The second step includes regular training atimbtes
accounts for the variation explicitly. tasks. Framework starts with analyzing the underlying mani

Similar frameworks were introduced in [14] and [15]. Both fold. A bootstrap database, consisting of identities withesal
works dealt with individualized subspaces. The actualower  observations (people with several images), is collectedhis
ment over [14] is that CDFA has a more generic structure whiclpurpose. The identities of the bootstrap database #iereit
can be used for the general classification problem wherdgs onthan the ones to be recognized; any suitable database can be
illumination was considered in [14]. The authors of [14] dise selected.
spherical harmonics to calculate class specific bases. &he r To simplify the calculations, the equation (2) may be rewrit
sults are limited to illumination as the spherical harmerdgan  ten in an element-wise form as
not be generalized to other types of variation. Having a com-
plete probabilistic framework is our advantage over thekwor
done in [15]. wherex; is an element of the observation vectqgg, Similarly,

The authors of [16] developed a cone model to solve the facthe vectomw; is the corresponding row of the mathi¥;. Again,
recognition problem with varying illumination. They arglie & is the corresponding element of the error veatpr,Such an
that the set of images of an object in a fixed pose but undeglement-wise formulation ignores the correlations amarelp
all possible illumination define a convex cone. The approachvhile introducing new correlations among columns/éf. Un-
requires a few images of each gallery identity to estimate itlike the classical factor analysis model, the factors azatéed
surface geometry and albedo map. That model illustrates thas deterministic variables which are calculated duringtie-
real power of the subspace analysis; nevertheless, it is agaifold learning step. Moreover, Gaussian priors are defined o
constrained to be useful only for illumination and may notkvo the vectoiw and the constany as
with a single opservatlon. W) ~ G,

Other techniques such as [17, 18, 19, 20, 21flesdrom be- 2
ing useful only for the specific variation type that they have Ple) ~ G(0.0i). (4)
been developed for. We try to propose a method which can be The proposed method is detailed through the following sec-
used for diferent variations. tions and summarized in Table 1 at the end of Section 3. For all

Xk = WiTCk + &, ©))



formulations a single variation such as illumination issidn  the dimensionality is at most the number oftdient variation

ered to be fective. labels in the bootstrap database.
An example embedding of the bootstrap database into two
3.1. Manifold Learning: Bootstrap dimensional subspace is illustrated in Figure 3(a). A ferth

The aim of this Step is to define a mappir'g" from the averaging Step is performe(_j to discard tiffeet of the Identlty .
high dimensional image space to the lower dimensional variacompletely. As shown in Figure 3(b), averages over idestiti

tion space as in are calculated to represent each variation type.
. The averaging is applied as follows: For each observation,
Ck=M"X. ) Xik, the reduced dimensional coordinateg, are calculated by

S Ty. iati
The termvariation spaces chosen to emphasize that the co- G =M xi.. Then, for each variation lab, the average over

ordinates of the subspace are related to the variation. litpca allidentities is taken by

Preserving Projections (LPP) [9] is employed as a manifoid e N

bedding technique. This technique tries to preserve thmint Ck = Z Cik > (20)
sic geometry and the local structure of the underlying nodahif i=1

The error function of LPP can be interpretated as a summatiofy, .« N is the total number of identities in the bootstrap
over distances between close data points.

2l

database.

2
&= Zk: ZJ: (Ck B Cj) Ski» ©) 3.2. Learning Factors and Other Statistics: Bootstrap

In this stage, the parameters of prior distributions defined
4) are calculated using the bootstrap datab¥se {xj}. Con-
sidering the element-wise formulation (3) and priors, tha-c
ditional and the marginal distributions over the variakleare

where ¢, is the one-dimensional representation of the data(
point, Xxx. The relation betweery andcy is defined asy =
mTx,, where the vectom is a column of the mappinil. The
codficients,Sy;, represent the similarity index. They may be

defined as pOuw, c) ~ GWw'c, UE),
[ expl=lixe = x112/1), Xk —Xj1I° < €, _ f d 11
Sy = { y i @) (%) P(4IW, C) p(w)dw . (11)
wheree defines the radius of the local neighborhood. The cost Both the prior and the conditional distributions are Gaus-
function (6) can be rewritten as siansin (11), and this makes the resulting marginal distioi,
) p(x), to be another Gaussian. Indeed, we do not need to solve
€= 3T (o - ) Sy this integral form analytically since the mean value and/ire
1 T To\2 ance can be easily evaluated by the following identitiescivhi
= 32kXj (m Xk —m Xi) Skj employ the equation (3).
= mTAD -S)A™m T T
E[x = E[w' ¢+ =u C,
_ mTALA Tm , (8) [ k] [ k Ek] H Ck

E [(% — E[xd)?] crQcy + ol (12)

These two parameters ardistient to define the marginal as

where the matrixA has data pointsy, as its columns.D is
a diagonal matrix, and its entries are column sumS.of. =

D — Sis the laplacian matrix. By introducing a constraint as Ta AT 2

~ Ck, C, QCx + 071). 13
mTADATm = 1, the minimization of (8) is transformed to the P04 ~ Gl G G 20+ i) (13)
generalized eigenvalue problem, The bootstrap database can be used at this point to calculate

the unknown parameter®, i, ando2 by maximizing the like-
lihoods. The Likelihood to be maximized is the empiricaklik

Then, the eigenvectors corresponding to minimum eigenvallihood of the observed points. Assuming i.i.d observations,

ALA"m = JADATm. 9)

ues are selected to construct a linear mang, the total |Og likelihood over observations is

During our experiments, the following settings are used: A N K
b_ootstrap databgse;ik.},. is collected f_or the concerned varia- In p(Xj, @, o2) = Z In p(Xi), (14)
tion type. Each identity has several images corresponding to X

different values of the variation. The distances between images i i
are calculated in a supervised manner. In other words, the si where the upper bounds andK denote the number of identi-

ilarity indexes in (7) are calculated based on variatiorelsb ties and diferent values of the variation in the bootstrap gallery,
Details can be gathered from [27, 9] respectively. After omitting the constant terms which avere-

Using such a supervised approach draws an upper bound Il%ted to the unknown parameters, the cost functional besome
the dimensionality of the manifold. Since the rank of the-gen

2
T
eralized eigenvalue problem in (9) is determined by the rermb T=- ZN] zK: In (CIQCK N UE)—EN: ZKl (Xlk H Ck) 15)
i k i k

T 2"

of discretized variation labels (@erent types of illumination), C, QcCy + o
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Figure 3: Embedding results of LPP: (a) 2D embedding of thedteg database with changing illumination. (b) Average dmattes corresponding toftérent
illumination conditions. These coordinates are invariarthe identity.

In order to determine the unknowns which minimize the cost
functional, we simply take partial derivatives with resper d(t+1)=
those and set them equal to zero. By this way, a system of
nonlinear equations is obtained as

N
> (k= u®Ta) (22)

Zl =

With an appropriate initial guess, this procedure converge
N fast. Two example solutions fqr corresponding to dierent
1 2 iati i in Ei i
2 _ ) T T variation types are illustrated in Figure 4. For all expemts,
== - M &) —C Qc, 16 Lo
KN Z(X'k K k> GG (16) we have usedi(1) = 1 as the initialization and stopped the
iteration when|Zi(t + 1) — & (t)] < 10°. These calculations

K 3 K N must be repeated for each pixel location as the element-wise
NZ T s 7 = Z % 2 Z(X‘k _I‘Tck)z , (17) : p e P
©qesrof L (dag+o?) 4 formulation is utilized.

K T N K y - 4 &
CkCy 1 Xik Ck Fe .
——|u== _—. 18 2
{Zk: o Qo+ aﬁ]ﬂ N Z zk: Qi+ o (18) mm
@

The solution for (16) is also a solution for (17), thus the-sys
tem is rank deficient. It has infinite solutions, and we can not
assume any optimality. To overcome this problem, one may cal
culate the emprical covariance matf (See Appendix A). It
is expected that the emprical covariance leads to an optimal
lution. Our experiments on changing illumination condigo
and facial expressions indicate that this assumption holds  Figure 4: Mean parametgr, is illustrated for two dferent variation types: (a)
real life scenarios. Finally, two useful equations emergge a  forillumination and (b) for expression.

-
y

N

1 2
2= NZ(Xik_ﬂTCk) - G ek, (19) , o
3.3. Recovering Class Factors: Training

K ot LN K . Having the conditional probabilitp(xgilwg, k) and the prior

[Z T—Ckz] =5 Z Z XiCie (20)  probability p(wg) defined in the bootstrap, the MAP estimation
i EQ( + o-k . . .

k may be applied to recover the factor loadings of a gallerp-ide

Analytic solution to these nonlinear equations is not &ivi tity g, given an observatiory by

Thus, a fixed point iteration is employed to approximate the
solution. Letli = ¢{Qcy + o2 anda(t) indicates the value of
the variablea att'" iteration step, then

Wpap = arg rpvax P(WglXgk, Ck) -
]

Using Bayes’ rule we get

6] 1N K
[Z (t)) ®) = N Z Zk: g_ (21) Wmap = arg T/?X P(XgklWg, C) P(Wg) ,



where the constant terp(xg) is omitted. The MAP estimate

. . . . . Table 1: Detailed algorithm of the CDFA.
for wy is the solution to the following set of linear equations 9

[14].
Awg = b, (23)  Bootstrap Given a bootstrap database= {xi}
where — Calculate the lower dimensional coordinatgsby (10)
— For each pixel location
A = igckcl +Q1 b= @Ck + Q’lﬂ. (24) + Calculate the emprical covariance matii¥, by (A.5)

Tk oy x Calculateu ando? using (21) and (22)

In this formulation, a single observation is enough for each™ning Given gallery observation§ = {xq}, for each identityg
class while having more points will increase the reliapibif — Calculate the lower dimensional coordinatgshy (26)
the recovery. When multiple observations for an idengigx- — Recovewyg for each pixel location by (23)
ist, the codficient matrix and the right-hand side vector are de-

. - - — Construct the matriXV4 so that it has vectonsg as its rows
termined by summations over observations.

— Apply Gram-Schmidt orthonormalization to the columng/d§

1 _ K _ Testing Given a probe observatiotpy,
A:Z—chcl+91, bzzﬁzqdﬂly. (25) o
< Tk © Tk — Calculated, for each gallery identity using (27)

— Select the identity with the minimum distance
Factorscy, are assumed to be calculated by the mappng

of LPP. First, the identity dependent factatg, are calculated
by

Cok = M Txgx. (26) 4. Interpretation of Governing Distributions

Then, the identity invariant factors are obtained by finding Beside the geometrical interpretation of the generativéeho
the closest (in terms of Euclidean distance)hat is calculated  described in Section 1.2, another probabilistic intertien is
by (10) during the bootstrap. Instead, one may take the geera given here, regarding the formulation of the CDFA framework
of k nearesty to increase the abl“ty of handling novel values. The margina| distributior‘p(xk) Speciﬁes a mixture of Gaus-

During our tests, we took the average of 3 neatest sians in which Gaussians are determined by the variation la-
belk. Each Gaussian is characterized by paramegtéeg and

3.4. Classification of novel points: Testing c Q¢ + o2. Hence, the variation defines the shape of each
Gaussian.

Given a novel observatiorpy, the class label can be de- |itially the geometry of the manifold consisting of thigm
termined by assigning the class with the maximum likelihood, .o qoes not depend on the identities, but only on the mean

P(XpkWg, C).- o _ _ _identity. Thus, the manifold can be considered as a template
Another approach which is used during our experiments is tgna; will be customized after selection of an identity. When

minimize the distancg between the _novel point and its synthey, identity is drawn from the prior distributiop(w), it re-
sized counterparts (distance to manifold). defines the mixture by the conditional distributigu(s/w, c).

dy = X0 — Xl 27) This procedure also e]iminates a considerable amount @frunc

9 Pk~ Zgkll» tainty in each Gaussian as the variance decrease$ foom

wherexge = WqWg Xk is calculated for each gallery identity, G0k + 7&- Whole process is illustrated in Figure S. .
g CDFA is defined as a two-layer decision process. At the first
layer, class identities are drawn from a prior distributide
second layer defines a mixture of Gaussians depending on a
template manifold characterized Ipfxy), and the conditional
distributions p(x«w, ck). The assignment of observations to
each Gaussian is achieved by the manifold embedding. In this
view, the manifold embedding can be considered as a clogteri
scheme.

As a third choice, posterior probabilities may be used to de
cide the identity of the novel point. The decision is madedsy s
lecting the maximum posteri@(\W|Xpk, Ck). Bayes’ rule trans-
forms the posterior into the multiplication of the likelibd and
the prior: p(WglXpk, C) = p(XpWg, C).p(Wg) (the constant
denominatoip(xpk) is omitted). This approach can be very use-
ful in large scale real life scenarios as it lets us to emplayrp
over gallery identities.

The second approach was used for all of our experiments Experimental Evaluations
For this approach, the orthonormality is assumed for medric
W4 whereas no such constraint was considered during the re- Several experiments were conducted to explore two impor-
covery. Therefore, Gram-Schmidt orthonormalization pesc tant aspects of the CDFA framework: (1) the recognition per-
is employed after solving (23). The detailed algorithm of th formance against extreme variations and (2) scalabilityeln
CDFA is given in Table 1. atively large databases. For the first evaluation, we slect
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Figure 5: lllustration of the governing distributions: @})emplate manifold is defined by the marginal distributipf). (b) This template is customized by the
identity drawn form the prior distributiom(w).

databases with extreme variations. Nevertheless, the size in the original observation spad”", wheren is the number of
such databases are usually small, including at most 30e48 id pixels of the input images.
tities. To analyze the real life performance of the method, a Certain properties of the manifolds like dimensionalitg ar
second group of experiments was performed on another set tftally determined by the bootstrap database. This is & ateh
databases with moderate variations but large number ofiiden an understandable behavior since the bootstrap datalflestse
ties. the way that the operative variation is modeled. The best-pra
The main characteristic of the method is its ability to beduse tice is to use a bootstrap database that is the most congatibl
for different types of variation. This claim was verified by dif- with the testing requirements.
ferent experiments underftBrent types of variation. Two types  The dfect of the manifold dimension is given in Figure 6. For
of variation were used during tests: (1) changing illumiorat  two types of variation (illumination and facial expressiceval-
and (2) changing facial expressions. uation datasets were collected. Scenarios witfedint boot-
strap and evaluation sets are demonstrated to grasp thecehar
, teristics completely. All tests were performed with evéil
5.1. Tuning the Bootstrap Parameters sets containing 50 identities. A single image was select¢be
gallery and all remaining images were used as probes. Those

| Iiaglte?t tbeglgst V\t')'th ﬂ;e (;“af‘(;fo't‘f] embedd|tn_g (I)n the S€dentities collected for the evaluation sets were not usethd
ected bootstrap database to decide the geometrical ésatdr the further experiments to reflect a real life behavior.

g;ﬁ]g:]as?c')fr?lgf' tﬁenirﬁ’:éﬁ;?ﬁ;e;ntgﬁjzou#\g?ﬂgiﬁ?g{g':;zdg:isnthe Experimgnts ingicatg that the_ method behaves similarly i_n
technique LPP relies on the solution. of a generalized eigent-erms of dimensionality even if the bootstrap dgtabasg 1S
value problem; therefore, the spectrum of eigenvalues ralgy h ghanged. The results are (?omparable when thg dimension is

. . Y i . fixed among dierent evaluation sets. Moreover, slight changes
with detgrmmmg the d|men§|on. However, using an eva.hmtl in dimension do notféect the recognition performance, consid-
dataset is a better choice since the characteristics ofdtia-v erably
tion may prevent a meaninful spectrum analysis. '

As indicated in Section 3.1, the intrinsic dimensionaliy i
bounded by the number offéirent variation labels present in
the bootstrap database. For instance, when using Multi-PIE Tests with changing illumination conditions were perfodne
[28] as the bootstrap database, the dimensionality is beaind with Yale B Database [16]. This database includes 10 identi-
by 20 since there are 20ff#rent illumination conditions. How- ties with 45 diferent illumination conditions. The database can
ever, this does not mean that the recognition is performed in be split into 4 subsets according to the illumination dilatt
20 dimensional subspace. This value represents the nurhberwhich also highlights the éiculty of the recognition.
basis vectors to span the variation subspace of each iglelntit The Extended Yale Face Database [29] was used as the boot-
is only related to the range of the generative model, how  strap database. This database is an extension of the drigina
the method deals with novel variations. The recognitioreis p Yale B with 28 identities which are not present in the origi-
formed by the point-to-manifold measure which is calcudate nal database. At the bootstrap phase, a subset of 41 illumina

7

5.2. Classification Performance against lllumination
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Figure 6: Recognition rates on evaluation sets witfedent manifold dimensions under (a) illumination and (b) feei@ression changes. Yale & Multi-PIE means
that the bootstrap set is from Yale and the evaluation sebvis Multi-PIE.

tion types out of 45 was used due to several corrupted imagesther methods.

Hence, the gallery and probe images had novel variationstwhi

were not present in the bootstrap database. Table 3: Recognition error rates for Yale B Database with iplelgallery im-
The size of images used in the experiments wasx Q0.  ages.

As a preprocessing step, all images were normalized so that

they have zero mean and unit variance. The dimension of the #'mlages S“%Sgt 12 S”gzet3 S“5bget4
manifold was fixed as 9. We performed 19 tests, and the average 5 0.0 02 14
was taken as the final performance. For each test, a singtgima 3 0.0 01 06
from subset 1 or subset 2 was selected as the gallery imadje, an 4 0.0 0.0 0.3
all remaining images were used as probes. In other words, 440 2 8-8 g-g 8-3

recognition attempts were performed for each test, regpiti
8360 recognition attempts in total. The recognition ratés w
this configuration are given in Table 2.

5.3. Classification Performance against Facial Expression

Table 2: Face recognition rates for Yale B Database. Perforesof the other As a second set of experiments, the performance of the
methods were taken from [14]. CDFA with facial expressions was analyzed. For this purpose
SThods Subset 12| Subset 3| SubsetZ three da_tabases were selected: Cohn-Kanade AU-.Coded facia
Correlation 100 767 6.4 expression database (@K[30], Japanese female facial expres-
Eigenfaces 100 74.2 24.3 sion database (JAFFE) [31], and CMU AMP face expression
Linear Subspaces 100 100 85 database [32].
Cones-attached 100 100 914 CK-+ is a collection of video sequences starting with a neutral
Cones-cast 100 100 100 . . . . .
9P 100 100 575 pose and ending with a peak expression. This database is used
Spherical Harmonics 100 99.7 96.9 as a common bootstrap gallery. Inside each sequence, 4smage
CDFA 100 99.2 95 were sampled. Including one additional neutral image, atmo

25 different images were collected for each identity (24 images
corresponding to 6 expression and 1 neutral image). The-mani
Recognition rates are very promising considering the modfold dimension was determined to be 20.

erate requirements for the bootstrap and the training. CDFA Two groups of tests were performed using databases JAFFE
is trained by a single image for each identity unlike methodsand CMU AMP. JAFFE includes 213 images of 10 Japanese
Cones-attached, Cones-cast, and 9PL which need number wbmen with number of facial expressions varying between 20
images between 5 and 9. Compared to the spherical harmoniand 23. These expressions can be veffedint from the ex-
CDFA is a more generic approach since it is not related to th@ressions which exist in the bootstrap database. Theref@e
physical aspects of the variation. The behavior of the CDFAalso showed the ability of the method with handling novel-var
with increasing number of gallery images is demonstrated irmtions. CMU AMP have 13 identities with 75ftérent expres-
Table 3. Random images from subsets 1 and 2 are selected sisns. Expressions present in this database are extreelyes
gallery images for each test. The increase in the recognitioas they also cause slight pose changes along with changes in
performance makes the proposed method more comparable fice geometries.
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CDFA is compared against two state-of-art techniques C@nd CAS-PEAL Database [33]. Both databases consist of im-
[25] and SRC [26]. To make fair comparisons, we followed theages of more than 200 people. CAS-PEAL was used for the
same scenarios with the compared methods, and the gallery sevaluation against facial expressions and Multi-PIE far ith
lection procedure and the structure of random tests were kefumination. Multi-PIE includes 20 dlierent illumination con-
same. Image size was set to be>332 since the compared ditions, and CAS-PEAL serves 5 facial expressions for each
methods had selected to use such a small image size. For eadentity.
identity, several gallery images were selected randomliythe The behavior of a classical subspace method against the in-
remaining images were used as probes. Images were used afteeasing number of gallery identities is demonstrated gufeé
zero mean-unit varianaeormalization. Results of two classical 7 (a). LDA against illumination was used for the demonsbrati
subspace techniques, PCA and LPP, are also analyzed tc undétl tests were performed on Multi-PIE with 2 random images
stand the marginal improvements. The transformation matriof each identity being selected as the gallery and the reéntain
ces for PCA and LPP are obtained using the+Clootstrap 18 images as probes.
database. LPP is trained in KNN mode with distances being LDA can perform steadily in terms of recognition rate with
calculated by the heat kernel. Table 4 and Table 5 show test ré¢s usual configuration. The subspace is re-constructed wit
sults for JAFFE and CMU AMP. Results for CS and SRC wereeach new identity, and the subspace dimension becameg)
taken from [25]. To give an impression of the significance ofwhereni is the number identities. However, as new identities
the presented results, the second columns list the numlaer of are introduced, LDA needs to be re-trained to get a promis-
tual recognition attempts for each experiment. These saoe  ing recognition rate. This behavior is illustrated in Figur(a)
simply calculated as (the number of test imagethe number  with "No bootstrap” label. One may eliminate such a training
of random trials). requirement by using a bootstrap database. In this newgetti
the subspace is constructed only once by using the bootstrap
database, yet the recognition rate decreases as the nufmber o
gallery identities is increased. Moreoverffdient bootstrap
databases may result in significantlyfdrent recognition rates.

Table 4: Average face recognition rates on JAFFE databa€etrials with
randomly chosen gallery images were performed for each row.

# Gallery | Recognitionf] CDFA | CS | SRC | PCA | LPP CDFA framework can improve the scalability as shown in
I2mages /;;tzegnpts o304 | 8954 901 | ssea| sied Figure 7 (b). The method was tested with several scenariihs bo

3 7350 9450 9325 921 | 891 [ 89.32 for illumination and facial expressions. Whep \Fata?r CK+ .

2 6920 9617 | 9512 | 95.13 | 91.62 | 91.33 was used as the bootstrap database, all settings like rfanifo
5 6520 96.33 | 96.12 | 96.01 | 93.54 | 93.87 dimensionality were kept same as the ones in Section 5.2 and

Section 5.3. We observe that the final recognition rates @tre n
affected significantly as bootstrap databases are switchezl. Th
largest performance fiierence caused by changing the boot-
strap database was between 1%%.

The results in Figure 7 (b) also suggest that it is possible to
fix the template manifold for a certain type of variation €inc

Table 5: Average face recognition rates on CMU AMP databa8érials with
randomly chosen gallery images were performed for each row.

# Gallery | Recognition| CDFA | CS | SRC | PCA | LPP same bootstrap database can be usedffierdnt tests: Ck
'4’“'39‘35 g;tgg‘pts SRR T E E—— was employed successfully in tests with CAS-PEAL, JAFFE,
5 5100 700 99911 998 | 9966 [ 9971 and QMU AMP Whl!e the Yale database is compatible both for
6 8970 99.99 | 99.97 | 99.75 | 99.68 | 99.84 Multi-PIE and Yale itself.

7 8840 100 100 | 99.74 | 99.71 | 99.75 Figure 8 gives recognition rates of several methods with in-
8 8710 100 | 100 | 99.87 | 99.89 | 99.87 creasing number of identities in the gallery. CDFA was com-
9 8580 100 | 100 | 100 | 99.94 | 99.97 : . ;

o 8450 100 T00 T 50.46 T 9905 [ 69.65 pared with PCA [5], LDA [7], and Tied Factor Analysis (TFA)

[1] since they share very common aspects with CDFA, in terms
of subspace analysis. The method in [1] was initially devel-

CDFA steadily outperforms others for both databases. How9pecj to handle the pose variation; however, the authors pro-

g : . - _ posed the algorithm as a generic factor analysis framevusik j
ever, the main intention here is to highlight that the samenf- 1 " s “Myii-PIE and CAS-PEAL were used for testing
work can be utilized for dierent types of variation without any

modification in the base configuration. Indeed, these databa against illumination and facial expression, respectivabypro-

happend to be trivial although they include severe vanmgatio ;g(ejitﬁizrvs;;nsgzsggaattcf?er?:lrrnno?hzosoltjsl;tgizcdeaf:rzﬁa\;\gtrz ?O
E lassical h like PCA hi high - : . .
tigﬁ?a?e(;%is;ﬁirspproac lke PCA can achieve hig recogna” methods. For tests with Multi-PIE, the bootstrap inésd

1000 images while this value is 250 for the tests with CAS-

5.4. Scalability
1 : .
; ; _ “There are two dferent Yale databases used during tests: Yale B Database
Further experiments were performed to examine the Scaléfm] and Extended Yale Face Database [29]. However, whenmemmm name

bility of the proposed method. Two relatively large dat@$as yaje’ is mentioned, it means that an augmented database whiestablished
were selected for the testing: CMU Multi-PIE Database [28]by concatenating two is used.
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Figure 7: (a) Behavior of LDA against the illumination withcieasing number of identities. Three scenarios were trigith mo bootstrap, with a bootstrap
drawn from Multi-PIE, and with a bootstrap drawn from Yalb) Behavior of CDFA against illumination and facial expressi. Yale & Multi-PIE means that the
bootstrap set is from Yale and the evaluation set is from MRIE.
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Figure 8: Recognition performance oftidirent methods on (a) Multi-PIE illumination database and (RPPEAL expression database. Values in parentheses
shows the number of gallery images.

PEAL. Subspace dimensions were optimized individually for5.5. Discussions on Experimental Results

each method. We performed several experiments to analyze the perfor-
For both tests, bootstrap and the trairitegting images were mance of the proposed method againfiiedéent variation types

drawn from the same databases. Therefore, the manifold diand with relatively large databases. In both cases, thdtsesu

mension was 4 for tests with CAS-PEAL since there are 5 dif-are very promising.

ferent expressions in database, and the upper bound igdimit Several advantages of the method can be summarized as fol-

by the number of expressions. In both sets of experimergs, thHows: (1) diferent types of variation that lie on smooth man-

image size was 108 90. Images were normalized witero  ifolds can be handled by the method, (2) the scalability of

mean-unit varianc@ormalization. the classical factor analysis is improved by a class depgnde
For CDFA and TFA, a single gallery image was selected andgcheme, (3) the decision process is fully probabilistid, pos-

all remaining images were used as probes. Then, for a test haterior probabilities can be utilized for large scale and dom

ing N gallery identities, 1% N recognition attempts were per- specific real life applications by incorporating priors dret

formed for Multi-PIE and 4 N recognition attempts were per- identities, (4) bootstrap has less time complexity comgpaoe

formed for CAS-PEAL. These attempts were repeated for eacBD rendering approaches, and finally (5) a single obsenvatio

random gallery image selection, and the averages were.notedfor each identity is sfficient to perform reliable recognition
The recognition rates tend to decrease with other methodshile a way to favor more images is also introduced.

whereas CDFA performs steadily as the number of identities The main drawback of the proposed framework is its space

increases. This fact is depicted in Figure 8. complexity. For each gallery identity, the whole subspace i
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defined. Compared to classical methods, which store a low di- K

mensional vector for each identity, storing a high dimenaio = Z [IXik = WizGa = WizGi = - .- = WinCall,
matrix requires more space. Moreover, the testing has rela- k=1

tively higher time complexity since at least two matrix-t@c wherew;; indicatesj™ column of the matri®W;, andcy; is j™
products are required{" x, andWgcx) to make decision while  glement of vectoc,.

the classical factor analysis only performs a norm calasat Normalization constraintfw;;|| = 1 are not introduced, since
When speaking in terms efall clock time the training and the - yhe scaling factorsg;, are already known and fixed. Thus,
testing per image take approximately 0.3 seconds and 40 Mils|axations on the norms of the vectors are required to assur
liseconds, respectively on a regular PC (Intel Core 2 Duo 2.20pal minimum. Similarly, orthogonality is not considere

GHz and 3 GB RAM). These values are valid on a development g gptimization problem can be restated as the following
environment. The real life performance is better with agpro {56 minimization to simplify calculations.

mately 20 milliseconds for testing on the same PC.

(A.1)

T =TrXT —ciw] —cw) —... —cw]]. (A.2)

6. Conclusions Here the notation is changed slightly. The maiibas the
vectorx as itk column. The vectog; is the collection of con-

A linear generative model was developed to improve the genstantsc,j. The indexi of vectorsw;; is dropped for the clarity.

eral factor analysis framework. The main novelty is the com-By rewriting the equation we get

plete probabilistic structure that individualizes matdfoharts

resulting in a class dependent design. Modeling nonlinagrv J = Tr(XXT) —2c]XTw; —... - 21X wy,

ations like illumination and facial expression is achiebgdn- C] C1W{ W1 + 2C] CoW] Wy + ... + 2C] CaW] W

corporating a manifold embedding technique to obtain aline

representation of thefective variation. This is not a surprising

result considering the fact that such variations can be tedde

linearly on some geometries. For instance, illuminatiom loa

modeled as a linear combination of spherical harmonics on a

2CH CIWI Wy + CLCoWI Wy + ... + 2C) cuwd w,

+ o+ + o+

2cT W wy + ...+ ¢l eaw wy. (A.3)

Derivatives with respect to each basis vector yield thefoll

unit sphere. . . ;
We propose a probabilistic framework that can be employe('Jfqg set of linear equations.
?n gen_er_al classification problems when a problema_mic u’ari_a _ —Xcp + cIclwl o+ cIcnwn - 0,
is exhibited on class samples. The only assumption which is
used implicitly is that the variation can be modeled on a sfmoo
manifolq. If the nonlinear embe'dding fails: the resultiog/ér “XCn+ CTCWs +...+ClcWn = O. (A.4)
dimensional coordinates may disturb the final performance.
The initial results are very promising indicating the paiain In the matrix form, we have
of the proposed framework as a replacement to regular soéspa
analysis methods. The proposed approach defines a novel con- & CiC2 ... CCn |[ Wi Xcq
nection between the manifold embedding and the probabilist Gl Gl ... GG || W2 Xc2
models. : oo S Il
~ Combining diferent variations is left as a future work. The CI'Cl CI-Cz cﬁlcn W Xc,
first step towards this goal may be using factor tensorsadste
of factor matrices. The size of the system is relatively small depending on the

dimension of the subspace. The rank of thefiioient matrix

is usuallyn provided that a linearly independent set of vectors,

Appendix A. Approximating the covariance matrix of W ¢, exists. Hence, there is a unique solution for the probles. A
distribution the complete basis sal;, of each identityi is calculated, the

covariance matrix for the distributiop(w) can be estimated by
To calculate the covariance matrix of the distribution dedin - the empirical formula

on the factor loadingd)V/, a way similar to the one proposed in
[15] is followed. The factor loadingd)/, are considered as a 1N 1
basis set of the variation subspace. Therefore, factprare Qe = N Z(Wi - W)(wi —W) ", (A.5)
assumed to be coordinates. linear combination ca@cients. =1

Let's assume that we haw¢ images of an identity in the  wherew is the mean value. One should be careful with this
bootstrap database. Then the total reconstruction errdhé  notation. Here, the form defined in (3) is used. Therefore, th

identityi is vectorw; is a row (not a column) of the matri¥/;. After calcu-
K lating the matrice§V; for all identities of the bootstrap gallery,
s = Z Xk — Wi the covariance matrices corresponding tdedent rows are cal-
— culated independently.
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