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Abstract

We propose a class dependent factor analysis model (CDFA) which can be used in the general face recognition task under certain
variations. The model utilizes the class information in a supervised manner to define a separate manifold for each class.Inside
each manifold, a mixture of Gaussians is designated to handle the variation. The proposed model learns the system parameters in
a probabilistic framework, allowing a Bayesian decision model. A manifold embedding technique is incorporated to handle the
nonlinearity introduced by the variation; hence, a novel connection between manifold learning and probabilistic generative models
is proposed. CDFA has better recognition accuracy and scalability over a classical factor analysis model. Experimental evaluations
on the face recognition under changing illumination conditions and facial expressions indicate the ability of the proposed model to
handle different types of variation. The achieved recognition rates are comparable to the state-of-art results, while it is also shown
that the recognition rate does not decrease critically as the number of gallery identities increases.
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1. Introduction

The face recognition domain still needs robust and scalable
algorithms to handle real life variations like pose, illumination,
and facial expressions. Although various approaches have been
studied by many authors, there is not a generic method which
can deal with different variations with a promising scalability.

In this paper, we propose a novel object recognition frame-
work called class dependent factor analysis model (CDFA) to
increase the scalability of a recognition system and to overcome
certain variations that may be present during the data acqui-
sition. The primary goal is to develope a generic method for
the face recognition problem under a selected type of variation.
Combining different types of variation is another challenge that
is left to be investigated as a future work. To this extend, the
grammatical structure of the classical factor analysis model is
redesigned to enhance its semantic setup.

The method is initially developed to handle illumination and
expression changes; however, the viewpoint change can alsobe
analyzed with the same approach after preprocessing or feature
point selection steps as introduced in [1, 2, 3]. Such require-
ments for the pose variation are inevitable due to the high non-
linearity of image formation with changing view points.

1.1. The Classical Approaches And Their Limitations

Many popular face recognition algorithms use holistic ap-
proaches in conjunction with appearence-based models [4].
Appearance-based models utilize the actual pixel intensities,
and this fact alone is enough to damage the effective signal-
noise ratio since individual pixels tend to change dramatically
under certain variations like illumination and facial expression.

A common approach to handle such variations is to define a
lower dimensional subspace in which the useful statistics are
more definite compared to the noise. As an example, Princi-
pal Component Analysis (PCA) [5] is used to define a subspace
where the variance on principal axes is stimulated.

When the utilized appearance-based method depends on a
dimensionality reduction technique, factor analysis happens to
be the main actor. Factor analysis is a well known and com-
monly used approach in the data analysis community. Although
its early development traces to the beginning of the century, it
is still one of the most popular multivariate statistical analysis
tools in applied science domain [6]. Its main formulation isa
linear generative model

x =Wc + ǫ , (1)

where the weighted average of lower dimensional factors,c, is
taken to generate a higher dimensional signal,x. In this view,
factor analysis can be seen as a dimensionality reduction tech-
nique when the inverse mapping ofW is considered.

Factor analysis is a powerful tool, especially when it is used
for the dimensionality reduction. The classification is achieved
in the lower dimensional subspace instead of the noisy higher
dimensional pixel space. The very same idea is exploited in
PCA and Linear Discriminant Analysis (LDA). They both have
the same underlying generative model but different ways to get
the mappingW.

The first limitation of such approaches arises with thecom-
mon subspaceconstraint: The mapping,W, is common for all
classes. The discrimination among classes is achieved by the
deployment of the class centroids on the coordinate system.
Such a modeling is insufficient when the effect of the varia-
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Figure 1: Illustration of individual manifolds of different identities. Any point on the manifold corresponds to a variation type. The intrinsic geometry is common
among different manifolds. This behavior results in the same variation type for same coordinate values.

tion is more dominant than the class characteristics. In such
a case, the coordinates of the points are mostly determined by
the variation type. A well known example is the fact that the
images of different people under same illumination lie closer
in such subspaces compared to the images of a single person
under different illumination.

Embeddings like PCA can solve problems caused by sta-
tistically well behaving noise terms. However, under a prob-
lematic variation, individual or interclass statistics may be al-
tered dramatically preventing a useful discrimination. Anele-
gant idea is to distinguish the real signal (identity of the image)
and the noise caused by variation (differences imposed by il-
lumination). In LDA [7], this idea is exploited by controlling
the inter-class and intra-class variances. However, it keeps the
same generative model and still tries to assign a unique coordi-
nate vector,c, for different samples of the same class.

In the real life, recognition and classification tasks usually
deal with variations that result in nonlinear data geometries.
Therefore, one requires more sophisticated mathematical tools
to investigate [8]. While the most of the methods use a linear-
ity constraint over the data geometry, relatively new techniques
called ”Manifold Learning” have been developed to eliminate
the linearity constraints [9, 10, 11]. The main idea behind man-
ifold learning is to utilize local geodesic distances instead of
global Euclidean distances.

1.2. Overview of the CDFA Framework

The design of the framework starts with the reformulation of
the factor analysis model under a variation such as illumina-
tion. An observationxik, which belongs to the classi and has a
variationk, is generated by the model

xik =W ick + ǫk . (2)

With this formulation, we introduce individual factor load-
ings, W i , for each classi, instead of a common loading ma-
trix for all classes. However, the factors,ck (coordinates on
the lower dimensional subspace), are common for all classes

and related to the variation type. The geometric interpretation
yields different manifolds for different classes while all mani-
folds have exactly same intrinsic geometries. Inside two man-
ifolds, points having same local coordinates correspond tothe
same variation type. This interpretation is illustrated inFigure
1. Several important aspects of this formulation should be men-
tioned:

• Each class has its own subspace/manifold. Therefore, dis-
crimination between classes is performed by the distance
to the manifold instead of the distance within the manifold.
Inside each individual manifold, a mixture of Gaussians
may be defined to model the variation.

• Coordinate vectors,ck, represent the variation type instead
of class identities. Thus, the determination of the variation
value is explicitly provided.

• Class identities are stored as factor loadings in matrixW i .
The variation does not condition the structure of the matrix
since it is already modeled by the factors.

• The intrinsic dimensionality of manifolds is fixed once de-
termined during the bootstrap. Nevertheless, the actual di-
mensionality in which the recognition is performed isn
since the manifolds are embedded inℜn, wheren is the
number of pixels in images.

• A manifold learning step is employed to derive the reduced
dimensional coordinates,ck. Thus, a connection between
manifold learning and probabilistic generative models is
proposed. This can be seen as an initial step towards non-
linear probabilistic models.

The difference between individualized and common factor
loadings can be observed in Figure 2. The proposed method
introduces basis sets which are specific to their corresponding
classes. With this setting, one can synthesize different images
of a person under different conditions like changing light source
positions.
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Figure 2: Demonstration of the semantic difference between (a) a common
basis set generated by a classical approach (SVD was used forthis example)
and (b) class dependent basis sets generated by the proposedapproach. Each
basis set includes the class information intrinsically. Forthis example, images
under changing illumination conditions were used.

A critical feature of the method is its generic structure. We
do not employ any physical or geometrical attributes of the con-
cerned variation. Hence, any variation lying on a smooth man-
ifold can be modeled by the proposed method.

2. Connections to Previous Works

The proposed method has an analogous formulation with the
probabilistic interpretation of PCA [12, 13]. Both approaches
tackle with finding lower dimensional representations of obser-
vations under some prior assumptions. The main difference is
that the proposed method derives class specific coordinatesand
accounts for the variation explicitly.

Similar frameworks were introduced in [14] and [15]. Both
works dealt with individualized subspaces. The actual improve-
ment over [14] is that CDFA has a more generic structure which
can be used for the general classification problem whereas only
illumination was considered in [14]. The authors of [14] used
spherical harmonics to calculate class specific bases. The re-
sults are limited to illumination as the spherical harmonics can
not be generalized to other types of variation. Having a com-
plete probabilistic framework is our advantage over the work
done in [15].

The authors of [16] developed a cone model to solve the face
recognition problem with varying illumination. They argued
that the set of images of an object in a fixed pose but under
all possible illumination define a convex cone. The approach
requires a few images of each gallery identity to estimate its
surface geometry and albedo map. That model illustrates the
real power of the subspace analysis; nevertheless, it is again
constrained to be useful only for illumination and may not work
with a single observation.

Other techniques such as [17, 18, 19, 20, 21] suffer from be-
ing useful only for the specific variation type that they have
been developed for. We try to propose a method which can be
used for different variations.

A comparable work was performed in [1]. Authors defined
a common subspace for class identities yet different transfor-
mation matrices (factor loadings) for different poses. Keeping
the class information inside the coordinate vectors inherits an
important disadvantage of classical subspace methods: as the
number of classes increases, the subspace dimensions also need
to be increased to sustain the scalability. The same idea was
used in [22] again for pose variations.

The probabilistic approaches for the discriminative subspace
analysis were proposed in [23] and [24]. Both solutions were
based on LDA with different settings. In [23], authors defined
a three layer decision process. At the initial layer, identity is
drawn from a common Gaussian distribution. Then, at the sec-
ond layer a perturbation is applied by another Gaussian. Finally,
the third layer defines a projection from the latent space to the
observation space. In [24], the model introduced in [1] was im-
proved by employing different projections from the latent space
to the observation space: one for the between-individual sub-
space and one for the within-individual subspace. Both models
still assume common subspaces for different identities.

Compressive sensing and sparse representation were utilized
in [25] and [26]. The subspace analysis was performed on the
basis of compressive sensing theory. Both techniques can be
used for different types of variation. We use these methods in
benchmarks against facial expressions.

3. Mathematical Background

The proposed method can be summarized as a two step prob-
abilistic framework. The first step is a bootstrap phase in which
useful statistics are calculated. A manifold embedding tech-
nique is employed at this step to define the geometry of the
subspace. The second step includes regular training and testing
tasks. Framework starts with analyzing the underlying mani-
fold. A bootstrap database, consisting of identities with several
observations (people with several images), is collected for this
purpose. The identities of the bootstrap database are different
than the ones to be recognized; any suitable database can be
selected.

To simplify the calculations, the equation (2) may be rewrit-
ten in an element-wise form as

xik = wT
i ck + ǫk , (3)

wherexik is an element of the observation vector,xik. Similarly,
the vectorwi is the corresponding row of the matrixW i . Again,
ǫk is the corresponding element of the error vector,ǫk. Such an
element-wise formulation ignores the correlations among pixels
while introducing new correlations among columns ofW i . Un-
like the classical factor analysis model, the factors are treated
as deterministic variables which are calculated during theman-
ifold learning step. Moreover, Gaussian priors are defined on
the vectorw and the constantǫk as

p(w) ∼ G(µ,Ω−1) ,

p(ǫk) ∼ G(0, σ2
k) . (4)

The proposed method is detailed through the following sec-
tions and summarized in Table 1 at the end of Section 3. For all
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formulations a single variation such as illumination is consid-
ered to be effective.

3.1. Manifold Learning: Bootstrap

The aim of this step is to define a mapping,M , from the
high dimensional image space to the lower dimensional varia-
tion space as in

ck = MTxk . (5)

The termvariation spaceis chosen to emphasize that the co-
ordinates of the subspace are related to the variation. Locality
Preserving Projections (LPP) [9] is employed as a manifold em-
bedding technique. This technique tries to preserve the intrin-
sic geometry and the local structure of the underlying manifold.
The error function of LPP can be interpretated as a summation
over distances between close data points.

ε =
∑

k

∑

j

(

ck − c j

)2
Sk j , (6)

where ck is the one-dimensional representation of the data
point, xk . The relation betweenxk andck is defined asck =

mTxk , where the vectorm is a column of the mappingM . The
coefficients,Sk j, represent the similarity index. They may be
defined as

Sk j =

{ exp(−‖xk − xj ‖
2/t), ‖xk − xj ‖

2 < ǫ ,

0, otherwise
(7)

whereǫ defines the radius of the local neighborhood. The cost
function (6) can be rewritten as

ε = 1
2

∑

k
∑

j

(

ck − c j

)2
Sk j

= 1
2

∑

k
∑

j

(

mTxk −mTxj

)2
Sk j

= mTA(D − S)ATm

= mTALA Tm , (8)

where the matrixA has data points,xi , as its columns.D is
a diagonal matrix, and its entries are column sums ofS. L =
D − S is the laplacian matrix. By introducing a constraint as
mTADATm = 1, the minimization of (8) is transformed to the
generalized eigenvalue problem,

ALA Tm = λADATm . (9)

Then, the eigenvectors corresponding to minimum eigenval-
ues are selected to construct a linear mapping,M .

During our experiments, the following settings are used: A
bootstrap database,{xik}, is collected for the concerned varia-
tion type. Each identityi has several images corresponding to
different values of the variation. The distances between images
are calculated in a supervised manner. In other words, the sim-
ilarity indexes in (7) are calculated based on variation labels.
Details can be gathered from [27, 9].

Using such a supervised approach draws an upper bound to
the dimensionality of the manifold. Since the rank of the gen-
eralized eigenvalue problem in (9) is determined by the number
of discretized variation labels (different types of illumination),

the dimensionality is at most the number of different variation
labels in the bootstrap database.

An example embedding of the bootstrap database into two
dimensional subspace is illustrated in Figure 3(a). A further
averaging step is performed to discard the effect of the identity
completely. As shown in Figure 3(b), averages over identities
are calculated to represent each variation type.

The averaging is applied as follows: For each observation,
xik, the reduced dimensional coordinates,cik, are calculated by
cik = MTxik. Then, for each variation label,k, the average over
all identities is taken by

ck =
1
N

N
∑

i=1

cik , (10)

where N is the total number of identities in the bootstrap
database.

3.2. Learning Factors and Other Statistics: Bootstrap

In this stage, the parameters of prior distributions definedin
(4) are calculated using the bootstrap database,X = {xik}. Con-
sidering the element-wise formulation (3) and priors, the con-
ditional and the marginal distributions over the variablexk are

p(xk|w, ck) ∼ G(wTck, σ
2
k) ,

p(xk) =

∫

p(xk|w, ck)p(w)dw . (11)

Both the prior and the conditional distributions are Gaus-
sians in (11), and this makes the resulting marginal distribution,
p(xk), to be another Gaussian. Indeed, we do not need to solve
this integral form analytically since the mean value and thevari-
ance can be easily evaluated by the following identities which
employ the equation (3).

E[xk] = E[wTck + ǫk] = µ
Tck ,

E
[

(xk − E[xk])
2
]

= cT
kΩck + σ

2
k . (12)

These two parameters are sufficient to define the marginal as

p(xk) ∼ G(µTck, cT
kΩck + σ

2
k) . (13)

The bootstrap database can be used at this point to calculate
the unknown parameters,Ω, µ, andσ2

k by maximizing the like-
lihoods. The Likelihood to be maximized is the empirical like-
lihood of the observed points,xik. Assuming i.i.d observations,
the total log likelihood over observations is

ln p(X|µ,Ω, σ2
k) =

N
∑

i

K
∑

k

ln p(xik) , (14)

where the upper boundsN andK denote the number of identi-
ties and different values of the variation in the bootstrap gallery,
respectively. After omitting the constant terms which are not re-
lated to the unknown parameters, the cost functional becomes

J = −

N
∑

i

K
∑

k

ln
(

cT
kΩck + σ

2
k

)

−

N
∑

i

K
∑

k

(

xik − µ
Tck

)2

cT
kΩck + σ

2
k

.(15)
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Figure 3: Embedding results of LPP: (a) 2D embedding of the bootstrap database with changing illumination. (b) Average coordinates corresponding to different
illumination conditions. These coordinates are invariant to the identity.

In order to determine the unknowns which minimize the cost
functional, we simply take partial derivatives with respect to
those and set them equal to zero. By this way, a system of
nonlinear equations is obtained as

σ2
k =

1
N

N
∑

i

(

xik − µ
Tck

)2
− cT

kΩck , (16)

N
K
∑

k

ckcT
k

cT
kΩck + σ

2
k

=

K
∑

k

ckcT
k

(

cT
kΩck + σ

2
k

)2

N
∑

i

(

xik − µ
Tck

)2
, (17)

















K
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k

ckcT
k

cT
kΩck + σ

2
k

















µ =
1
N

N
∑

i

K
∑

k

xikck

cT
kΩck + σ

2
k

. (18)

The solution for (16) is also a solution for (17), thus the sys-
tem is rank deficient. It has infinite solutions, and we can not
assume any optimality. To overcome this problem, one may cal-
culate the emprical covariance matrixΩe (See Appendix A). It
is expected that the emprical covariance leads to an optimalso-
lution. Our experiments on changing illumination conditions
and facial expressions indicate that this assumption holdsfor
real life scenarios. Finally, two useful equations emerge as

σ2
k =

1
N

N
∑

i

(

xik − µ
Tck

)2
− cT

kΩeck , (19)

















K
∑

k

ckcT
k

cT
kΩeck + σ

2
k

















µ =
1
N

N
∑

i

K
∑

k

xikck

cT
kΩeck + σ

2
k

. (20)

Analytic solution to these nonlinear equations is not trivial.
Thus, a fixed point iteration is employed to approximate the
solution. Letζk = cT

kΩck + σ
2
k anda(t) indicates the value of

the variablea at tth iteration step, then















K
∑

k

ckcT
k

ζk(t)















µ(t) =
1
N

N
∑

i

K
∑

k

xikck

ζk(t)
, (21)

ζk(t + 1) =
1
N

N
∑

i

(

xik − µ(t)
Tck

)2
. (22)

With an appropriate initial guess, this procedure converges
fast. Two example solutions forµ corresponding to different
variation types are illustrated in Figure 4. For all experiments,
we have usedζk(1) = 1 as the initialization and stopped the
iteration when |ζk(t + 1) − ζk(t)| ≤ 10−6. These calculations
must be repeated for each pixel location as the element-wise
formulation is utilized.

(a)

(b)

Figure 4: Mean parameter,µ, is illustrated for two different variation types: (a)
for illumination and (b) for expression.

3.3. Recovering Class Factors: Training

Having the conditional probabilityp(xgk|wg, ck) and the prior
probability p(wg) defined in the bootstrap, the MAP estimation
may be applied to recover the factor loadings of a gallery iden-
tity g, given an observationxgk by

wMAP = arg max
wg

p(wg|xgk, ck) .

Using Bayes’ rule we get

wMAP = arg max
wg

p(xgk|wg, ck)p(wg) ,
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where the constant termp(xgk) is omitted. The MAP estimate
for wg is the solution to the following set of linear equations
[14].

Awg = b , (23)

where

A =
1

σ2
k

ckcT
k +Ω

−1 , b =
xgk

σ2
k

ck +Ω
−1
µ . (24)

In this formulation, a single observation is enough for each
class while having more points will increase the reliability of
the recovery. When multiple observations for an identityg ex-
ist, the coefficient matrix and the right-hand side vector are de-
termined by summations over observations.

A =
∑

k

1

σ2
k

ckcT
k +Ω

−1 , b =
∑

k

xgk

σ2
k

ck +Ω
−1
µ . (25)

Factors,ck, are assumed to be calculated by the mappingM
of LPP. First, the identity dependent factors,cgk, are calculated
by

cgk = MTxgk . (26)

Then, the identity invariant factors are obtained by finding
the closest (in terms of Euclidean distance)ck that is calculated
by (10) during the bootstrap. Instead, one may take the average
of k nearestck to increase the ability of handling novel values.
During our tests, we took the average of 3 nearestck.

3.4. Classification of novel points: Testing

Given a novel observationxpk, the class label can be de-
termined by assigning the class with the maximum likelihood
p(xpk|Wg, ck).

Another approach which is used during our experiments is to
minimize the distance between the novel point and its synthe-
sized counterparts (distance to manifold).

dg = ‖xpk − xgk‖ , (27)

wherexgk = WgWT
g xpk is calculated for each gallery identity,

g.
As a third choice, posterior probabilities may be used to de-

cide the identity of the novel point. The decision is made by se-
lecting the maximum posteriorp(Wg|xpk, ck). Bayes’ rule trans-
forms the posterior into the multiplication of the likelihood and
the prior: p(Wg|xpk, ck) = p(xpk|Wg, ck).p(Wg) (the constant
denominatorp(xpk) is omitted). This approach can be very use-
ful in large scale real life scenarios as it lets us to employ priors
over gallery identities.

The second approach was used for all of our experiments.
For this approach, the orthonormality is assumed for matrices
Wg whereas no such constraint was considered during the re-
covery. Therefore, Gram-Schmidt orthonormalization process
is employed after solving (23). The detailed algorithm of the
CDFA is given in Table 1.

Table 1: Detailed algorithm of the CDFA.

Bootstrap: Given a bootstrap database,X = {xik}

– Calculate the lower dimensional coordinates,ck by (10)

– For each pixel location

∗ Calculate the emprical covariance matrix,Ωe by (A.5)

∗ Calculateµ andσ2
k using (21) and (22)

Training: Given gallery observations,G = {xgk}, for each identityg

– Calculate the lower dimensional coordinates,ck by (26)

– Recoverwg for each pixel location by (23)

– Construct the matrixWg so that it has vectorswg as its rows

– Apply Gram-Schmidt orthonormalization to the columns ofWg

Testing: Given a probe observationxpk,

– Calculatedg for each gallery identityg using (27)

– Select the identity with the minimum distance

4. Interpretation of Governing Distributions

Beside the geometrical interpretation of the generative model
described in Section 1.2, another probabilistic interpretation is
given here, regarding the formulation of the CDFA framework.
The marginal distributionp(xk) specifies a mixture of Gaus-
sians in which Gaussians are determined by the variation la-
bel k. Each Gaussian is characterized by parametersµ

Tck and
cT

kΩck + σ
2
k. Hence, the variation defines the shape of each

Gaussian.
Initially, the geometry of the manifold consisting of this mix-

ture does not depend on the identities, but only on the mean
identity. Thus, the manifold can be considered as a template
that will be customized after selection of an identity. When
an identity is drawn from the prior distributionp(w), it re-
defines the mixture by the conditional distributionsp(xk|w, ck).
This procedure also eliminates a considerable amount of uncer-
tainty in each Gaussian as the variance decreases toσ2 from
cT

kΩck + σ
2
k. Whole process is illustrated in Figure 5.

CDFA is defined as a two-layer decision process. At the first
layer, class identities are drawn from a prior distribution. The
second layer defines a mixture of Gaussians depending on a
template manifold characterized byp(xk), and the conditional
distributions p(xk|w, ck). The assignment of observations to
each Gaussian is achieved by the manifold embedding. In this
view, the manifold embedding can be considered as a clustering
scheme.

5. Experimental Evaluations

Several experiments were conducted to explore two impor-
tant aspects of the CDFA framework: (1) the recognition per-
formance against extreme variations and (2) scalability inrel-
atively large databases. For the first evaluation, we selected
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Figure 5: Illustration of the governing distributions: (a)A template manifold is defined by the marginal distribution,p(xk). (b) This template is customized by the
identity drawn form the prior distribution,p(w).

databases with extreme variations. Nevertheless, the sizes of
such databases are usually small, including at most 30-40 iden-
tities. To analyze the real life performance of the method, a
second group of experiments was performed on another set of
databases with moderate variations but large number of identi-
ties.

The main characteristic of the method is its ability to be used
for different types of variation. This claim was verified by dif-
ferent experiments under different types of variation. Two types
of variation were used during tests: (1) changing illumination
and (2) changing facial expressions.

5.1. Tuning the Bootstrap Parameters

Each test begins with the manifold embedding on the se-
lected bootstrap database to decide the geometrical features of
the manifold. One parameter that should be determined is the
dimension of the underlying manifold. The manifold learning
technique LPP relies on the solution of a generalized eigen-
value problem; therefore, the spectrum of eigenvalues may help
with determining the dimension. However, using an evaluation
dataset is a better choice since the characteristics of the varia-
tion may prevent a meaninful spectrum analysis.

As indicated in Section 3.1, the intrinsic dimensionality is
bounded by the number of different variation labels present in
the bootstrap database. For instance, when using Multi-PIE
[28] as the bootstrap database, the dimensionality is bounded
by 20 since there are 20 different illumination conditions. How-
ever, this does not mean that the recognition is performed ina
20 dimensional subspace. This value represents the number of
basis vectors to span the variation subspace of each identity. It
is only related to the range of the generative model,i.e. how
the method deals with novel variations. The recognition is per-
formed by the point-to-manifold measure which is calculated

in the original observation spaceℜn, wheren is the number of
pixels of the input images.

Certain properties of the manifolds like dimensionality are
totally determined by the bootstrap database. This is a clear and
an understandable behavior since the bootstrap database reflects
the way that the operative variation is modeled. The best prac-
tice is to use a bootstrap database that is the most compatible
with the testing requirements.

The effect of the manifold dimension is given in Figure 6. For
two types of variation (illumination and facial expression), eval-
uation datasets were collected. Scenarios with different boot-
strap and evaluation sets are demonstrated to grasp the charac-
teristics completely. All tests were performed with evaluation
sets containing 50 identities. A single image was selected as the
gallery and all remaining images were used as probes. Those
identities collected for the evaluation sets were not used during
the further experiments to reflect a real life behavior.

Experiments indicate that the method behaves similarly in
terms of dimensionality even if the bootstrap database is
changed. The results are comparable when the dimension is
fixed among different evaluation sets. Moreover, slight changes
in dimension do not affect the recognition performance, consid-
erably.

5.2. Classification Performance against Illumination

Tests with changing illumination conditions were performed
with Yale B Database [16]. This database includes 10 identi-
ties with 45 different illumination conditions. The database can
be split into 4 subsets according to the illumination direction,
which also highlights the difficulty of the recognition.

The Extended Yale Face Database [29] was used as the boot-
strap database. This database is an extension of the original
Yale B with 28 identities which are not present in the origi-
nal database. At the bootstrap phase, a subset of 41 illumina-
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Figure 6: Recognition rates on evaluation sets with different manifold dimensions under (a) illumination and (b) facial expression changes. Yale & Multi-PIE means
that the bootstrap set is from Yale and the evaluation set is from Multi-PIE.

tion types out of 45 was used due to several corrupted images.
Hence, the gallery and probe images had novel variations which
were not present in the bootstrap database.

The size of images used in the experiments was 100× 90.
As a preprocessing step, all images were normalized so that
they have zero mean and unit variance. The dimension of the
manifold was fixed as 9. We performed 19 tests, and the average
was taken as the final performance. For each test, a single image
from subset 1 or subset 2 was selected as the gallery image, and
all remaining images were used as probes. In other words, 440
recognition attempts were performed for each test, resulting in
8360 recognition attempts in total. The recognition rates with
this configuration are given in Table 2.

Table 2: Face recognition rates for Yale B Database. Performances of the other
methods were taken from [14].

Methods Subset 1-2 Subset 3 Subset 4
Correlation 100 76.7 26.4
Eigenfaces 100 74.2 24.3

Linear Subspaces 100 100 85
Cones-attached 100 100 91.4

Cones-cast 100 100 100
9PL 100 100 97.2

Spherical Harmonics 100 99.7 96.9
CDFA 100 99.2 95

Recognition rates are very promising considering the mod-
erate requirements for the bootstrap and the training. CDFA
is trained by a single image for each identity unlike methods
Cones-attached, Cones-cast, and 9PL which need number of
images between 5 and 9. Compared to the spherical harmonics,
CDFA is a more generic approach since it is not related to the
physical aspects of the variation. The behavior of the CDFA
with increasing number of gallery images is demonstrated in
Table 3. Random images from subsets 1 and 2 are selected as
gallery images for each test. The increase in the recognition
performance makes the proposed method more comparable to

other methods.

Table 3: Recognition error rates for Yale B Database with multiple gallery im-
ages.

# images Subset 1-2 Subset 3 Subset4
1 0.0 0.8 5.0
2 0.0 0.2 1.4
3 0.0 0.1 0.6
4 0.0 0.0 0.3
5 0.0 0.0 0.1
6 0.0 0.0 0.0

5.3. Classification Performance against Facial Expressions
As a second set of experiments, the performance of the

CDFA with facial expressions was analyzed. For this purpose,
three databases were selected: Cohn-Kanade AU-Coded facial
expression database (CK+) [30], Japanese female facial expres-
sion database (JAFFE) [31], and CMU AMP face expression
database [32].

CK+ is a collection of video sequences starting with a neutral
pose and ending with a peak expression. This database is used
as a common bootstrap gallery. Inside each sequence, 4 images
were sampled. Including one additional neutral image, at most
25 different images were collected for each identity (24 images
corresponding to 6 expression and 1 neutral image). The mani-
fold dimension was determined to be 20.

Two groups of tests were performed using databases JAFFE
and CMU AMP. JAFFE includes 213 images of 10 Japanese
women with number of facial expressions varying between 20
and 23. These expressions can be very different from the ex-
pressions which exist in the bootstrap database. Therefore, we
also showed the ability of the method with handling novel vari-
ations. CMU AMP have 13 identities with 75 different expres-
sions. Expressions present in this database are extremely severe
as they also cause slight pose changes along with changes in
face geometries.
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CDFA is compared against two state-of-art techniques CS
[25] and SRC [26]. To make fair comparisons, we followed the
same scenarios with the compared methods, and the gallery se-
lection procedure and the structure of random tests were kept
same. Image size was set to be 32× 32 since the compared
methods had selected to use such a small image size. For each
identity, several gallery images were selected randomly, and the
remaining images were used as probes. Images were used after
zero mean-unit variancenormalization. Results of two classical
subspace techniques, PCA and LPP, are also analyzed to under-
stand the marginal improvements. The transformation matri-
ces for PCA and LPP are obtained using the CK+ bootstrap
database. LPP is trained in kNN mode with distances being
calculated by the heat kernel. Table 4 and Table 5 show test re-
sults for JAFFE and CMU AMP. Results for CS and SRC were
taken from [25]. To give an impression of the significance of
the presented results, the second columns list the number ofac-
tual recognition attempts for each experiment. These values are
simply calculated as (the number of test images× the number
of random trials).

Table 4: Average face recognition rates on JAFFE database. 40 trials with
randomly chosen gallery images were performed for each row.

# Gallery
Images

Recognition
Attempts

CDFA CS SRC PCA LPP

2 7720 93.04 89.94 90.1 85.84 83.84
3 7320 94.50 93.22 92.1 89.1 89.32
4 6920 96.17 95.12 95.13 91.62 91.33
5 6520 96.33 96.12 96.01 93.54 93.87

Table 5: Average face recognition rates on CMU AMP database.10 trials with
randomly chosen gallery images were performed for each row.

# Gallery
Images

Recognition
Attempts

CDFA CS SRC PCA LPP

4 9230 99.92 98.95 98.9 99.6 99.91
5 9100 100 99.91 99.8 99.66 99.71
6 8970 99.99 99.97 99.75 99.68 99.84
7 8840 100 100 99.74 99.71 99.75
8 8710 100 100 99.87 99.89 99.87
9 8580 100 100 100 99.94 99.97
10 8450 100 100 99.49 99.85 99.95

CDFA steadily outperforms others for both databases. How-
ever, the main intention here is to highlight that the same frame-
work can be utilized for different types of variation without any
modification in the base configuration. Indeed, these databases
happend to be trivial although they include severe variations.
Even a classical approach like PCA can achieve high recogni-
tion rates on them.

5.4. Scalability

Further experiments were performed to examine the scala-
bility of the proposed method. Two relatively large databases
were selected for the testing: CMU Multi-PIE Database [28]

and CAS-PEAL Database [33]. Both databases consist of im-
ages of more than 200 people. CAS-PEAL was used for the
evaluation against facial expressions and Multi-PIE for the il-
lumination. Multi-PIE includes 20 different illumination con-
ditions, and CAS-PEAL serves 5 facial expressions for each
identity.

The behavior of a classical subspace method against the in-
creasing number of gallery identities is demonstrated in Figure
7 (a). LDA against illumination was used for the demonstration.
All tests were performed on Multi-PIE with 2 random images
of each identity being selected as the gallery and the remaining
18 images as probes.

LDA can perform steadily in terms of recognition rate with
its usual configuration. The subspace is re-constructed with
each new identity, and the subspace dimension becomes (ni−1)
whereni is the number identities. However, as new identities
are introduced, LDA needs to be re-trained to get a promis-
ing recognition rate. This behavior is illustrated in Figure 7 (a)
with ”No bootstrap” label. One may eliminate such a training
requirement by using a bootstrap database. In this new setting,
the subspace is constructed only once by using the bootstrap
database, yet the recognition rate decreases as the number of
gallery identities is increased. Moreover, different bootstrap
databases may result in significantly different recognition rates.

CDFA framework can improve the scalability as shown in
Figure 7 (b). The method was tested with several scenarios both
for illumination and facial expressions. When Yale1 or CK+
was used as the bootstrap database, all settings like manifold
dimensionality were kept same as the ones in Section 5.2 and
Section 5.3. We observe that the final recognition rates are not
affected significantly as bootstrap databases are switched. The
largest performance difference caused by changing the boot-
strap database was between 1%− 2%.

The results in Figure 7 (b) also suggest that it is possible to
fix the template manifold for a certain type of variation since
same bootstrap database can be used in different tests: CK+
was employed successfully in tests with CAS-PEAL, JAFFE,
and CMU AMP while the Yale database is compatible both for
Multi-PIE and Yale itself.

Figure 8 gives recognition rates of several methods with in-
creasing number of identities in the gallery. CDFA was com-
pared with PCA [5], LDA [7], and Tied Factor Analysis (TFA)
[1] since they share very common aspects with CDFA, in terms
of subspace analysis. The method in [1] was initially devel-
oped to handle the pose variation; however, the authors pro-
posed the algorithm as a generic factor analysis framework just
like CDFA. Multi-PIE and CAS-PEAL were used for testing
against illumination and facial expression, respectively. To pro-
vide a fair comparison, a common bootstrap database with 50
identities was collected to learn the subspace parameters for
all methods. For tests with Multi-PIE, the bootstrap includes
1000 images while this value is 250 for the tests with CAS-

1There are two different Yale databases used during tests: Yale B Database
[16] and Extended Yale Face Database [29]. However, when a common name
’Yale’ is mentioned, it means that an augmented database which is established
by concatenating two is used.
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Figure 7: (a) Behavior of LDA against the illumination with increasing number of identities. Three scenarios were tried: with no bootstrap, with a bootstrap
drawn from Multi-PIE, and with a bootstrap drawn from Yale. (b) Behavior of CDFA against illumination and facial expressions. Yale & Multi-PIE means that the
bootstrap set is from Yale and the evaluation set is from Multi-PIE.
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Figure 8: Recognition performance of different methods on (a) Multi-PIE illumination database and (b) CAS-PEAL expression database. Values in parentheses
shows the number of gallery images.

PEAL. Subspace dimensions were optimized individually for
each method.

For both tests, bootstrap and the training/testing images were
drawn from the same databases. Therefore, the manifold di-
mension was 4 for tests with CAS-PEAL since there are 5 dif-
ferent expressions in database, and the upper bound is limited
by the number of expressions. In both sets of experiments, the
image size was 100× 90. Images were normalized withzero
mean-unit variancenormalization.

For CDFA and TFA, a single gallery image was selected and
all remaining images were used as probes. Then, for a test hav-
ing N gallery identities, 19× N recognition attempts were per-
formed for Multi-PIE and 4×N recognition attempts were per-
formed for CAS-PEAL. These attempts were repeated for each
random gallery image selection, and the averages were noted.

The recognition rates tend to decrease with other methods
whereas CDFA performs steadily as the number of identities
increases. This fact is depicted in Figure 8.

5.5. Discussions on Experimental Results
We performed several experiments to analyze the perfor-

mance of the proposed method against different variation types
and with relatively large databases. In both cases, the results
are very promising.

Several advantages of the method can be summarized as fol-
lows: (1) different types of variation that lie on smooth man-
ifolds can be handled by the method, (2) the scalability of
the classical factor analysis is improved by a class dependent
scheme, (3) the decision process is fully probabilistic, and pos-
terior probabilities can be utilized for large scale and domain
specific real life applications by incorporating priors on the
identities, (4) bootstrap has less time complexity compared to
3D rendering approaches, and finally (5) a single observation
for each identity is sufficient to perform reliable recognition
while a way to favor more images is also introduced.

The main drawback of the proposed framework is its space
complexity. For each gallery identity, the whole subspace is
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defined. Compared to classical methods, which store a low di-
mensional vector for each identity, storing a high dimensional
matrix requires more space. Moreover, the testing has rela-
tively higher time complexity since at least two matrix-vector
products are required (MTxp andWgck) to make decision while
the classical factor analysis only performs a norm calculation.
When speaking in terms ofwall clock time, the training and the
testing per image take approximately 0.3 seconds and 40 mil-
liseconds, respectively on a regular PC (Intel Core 2 Duo 2.2
GHz and 3 GB RAM). These values are valid on a development
environment. The real life performance is better with approxi-
mately 20 milliseconds for testing on the same PC.

6. Conclusions

A linear generative model was developed to improve the gen-
eral factor analysis framework. The main novelty is the com-
plete probabilistic structure that individualizes manifold charts
resulting in a class dependent design. Modeling nonlinear vari-
ations like illumination and facial expression is achievedby in-
corporating a manifold embedding technique to obtain a linear
representation of the effective variation. This is not a surprising
result considering the fact that such variations can be modeled
linearly on some geometries. For instance, illumination can be
modeled as a linear combination of spherical harmonics on a
unit sphere.

We propose a probabilistic framework that can be employed
in general classification problems when a problematic variation
is exhibited on class samples. The only assumption which is
used implicitly is that the variation can be modeled on a smooth
manifold. If the nonlinear embedding fails, the resulting lower
dimensional coordinates may disturb the final performance.

The initial results are very promising indicating the potential
of the proposed framework as a replacement to regular subspace
analysis methods. The proposed approach defines a novel con-
nection between the manifold embedding and the probabilistic
models.

Combining different variations is left as a future work. The
first step towards this goal may be using factor tensors instead
of factor matrices.

Appendix A. Approximating the covariance matrix of W
distribution

To calculate the covariance matrix of the distribution defined
on the factor loadings,W, a way similar to the one proposed in
[15] is followed. The factor loadings,W, are considered as a
basis set of the variation subspace. Therefore, factors,ck, are
assumed to be coordinatesi.e. linear combination coefficients.

Let’s assume that we haveK images of an identityi in the
bootstrap database. Then the total reconstruction error for the
identity i is

E =

K
∑

k=1

‖xik −W ick‖

=

K
∑

k=1

‖xik − wi1ck1 − wi2ck2 − . . . − winckn‖ , (A.1)

wherewi j indicatesjth column of the matrixW i , andck j is jth

element of vectorck.
Normalization constraints‖wi j ‖ = 1 are not introduced, since

the scaling factors,ck j, are already known and fixed. Thus,
relaxations on the norms of the vectors are required to assure a
global minimum. Similarly, orthogonality is not considered.

The optimization problem can be restated as the following
trace minimization to simplify calculations.

J = Tr[XT − c1wT
1 − c2wT

2 − . . . − cnwT
n ] . (A.2)

Here the notation is changed slightly. The matrixX has the
vectorxik as itkth column. The vectorc j is the collection of con-
stantsck j. The indexi of vectorswi j is dropped for the clarity.
By rewriting the equation we get

J = Tr(XXT) − 2cT
1 XTw1 − . . . − 2cT

n XTwn

+ cT
1 c1wT

1 w1 + 2cT
1 c2wT

1 w2 + . . . + 2cT
1 cnwT

1 wn

+ 2cT
2 c1wT

2 w1 + cT
2 c2wT

2 w2 + . . . + 2cT
2 cnwT

2 wn

+ . . .

+ 2cT
n c1wT

n w1 + . . . + cT
n cnwT

n wn . (A.3)

Derivatives with respect to each basis vector yield the follow-
ing set of linear equations.

−Xc1 + cT
1 c1w1 + . . . + cT

1 cnwn = 0,
...

−Xcn + cT
n c1w1 + . . . + cT

n cnwn = 0. (A.4)

In the matrix form, we have
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The size of the system is relatively small depending on the
dimension of the subspace. The rank of the coefficient matrix
is usuallyn provided that a linearly independent set of vectors,
ci , exists. Hence, there is a unique solution for the problem. As
the complete basis set,W i , of each identityi is calculated, the
covariance matrix for the distributionp(w) can be estimated by
the empirical formula

Ωe =
1
N

N
∑

i=1

(wi − w)(wi − w)T , (A.5)

wherew is the mean value. One should be careful with this
notation. Here, the form defined in (3) is used. Therefore, the
vectorwi is a row (not a column) of the matrixW i . After calcu-
lating the matricesW i for all identities of the bootstrap gallery,
the covariance matrices corresponding to different rows are cal-
culated independently.
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