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Multivariate pattern analysis techniques have been increasingly used over the past decade to derive highly sen-
sitive and specific biomarkers of diseases on an individual basis. The driving assumption behind the vastmajority
of the existingmethodologies is that a single imaging pattern can distinguish between healthy and diseased pop-
ulations, or between two subgroups of patients (e.g., progressors vs. non-progressors). This assumption effective-
ly ignores the ample evidence for the heterogeneous nature of brain diseases. Neurodegenerative,
neuropsychiatric and neurodevelopmental disorders are largely characterized by high clinical heterogeneity,
which likely stems in part from underlying neuroanatomical heterogeneity of various pathologies. Detecting
and characterizing heterogeneity may deepen our understanding of disease mechanisms and lead to patient-
specific treatments. However, few approaches tackle disease subtype discovery in a principled machine learning
framework. To address this challenge, we present a novel non-linear learning algorithm for simultaneous binary
classification and subtype identification, termed HYDRA (Heterogeneity through Discriminative Analysis). Neu-
roanatomical subtypes are effectively captured by multiple linear hyperplanes, which form a convex polytope
that separates two groups (e.g., healthy controls from pathologic samples); each face of this polytope effectively
defines a disease subtype. We validated HYDRA on simulated and clinical data. In the latter case, we applied the
proposed method independently to the imaging and genetic datasets of the Alzheimer's Disease Neuroimaging
Initiative (ADNI 1) study. The imaging dataset consisted of T1-weighted volumetric magnetic resonance images
of 123 AD patients and 177 controls. The genetic dataset consisted of single nucleotide polymorphism informa-
tion of 103 AD patients and 139 controls. We identified 3 reproducible subtypes of atrophy in AD relative to con-
trols: (1) diffuse and extensive atrophy, (2) precuneus and extensive temporal lobe atrophy, as well some
prefrontal atrophy, (3) atrophy pattern very much confined to the hippocampus and the medial temporal lobe.
The genetics dataset yielded two subtypes of AD characterizedmainly by thepresence/absence of the apolipopro-
tein E (APOE) ε4 genotype, but also involving differential presence of risk alleles of CD2AP, SPON1 and LOC39095
SNPs that were associated with differences in the respective patterns of brain atrophy, especially in the
precuneus. The results demonstrate the potential of the proposed approach tomap disease heterogeneity in neu-
roimaging and genetic studies.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Automated analysis of spatially aligned medical images has become
the main framework for studying the anatomy and function of the
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human brain. This is typically performed by either employing voxel-
based (VBA) or multivariate pattern analysis (MVPA) techniques.

VBA complements region of interest (ROI) volumetry by providing a
comprehensive assessment of anatomical differences throughout the
brain, while not being limited by a priori regional hypotheses. VBA typ-
ically performsmass-univariate statistical tests on either tissue compo-
sition or deformation fields, aiming to reveal regional anatomical or
shape differences (Ashburner et al., 1998; Goldszal et al., 1998;
Ashburner and Friston, 2000; Davatzikos et al., 2001; Chung et al.,
2001; Fox et al., 2001; Job et al., 2002; Kubicki et al., 2002; Chung
et al., 2003; Studholme et al., 2004; Bernasconi et al., 2004; Giuliani
et al., 2005; Job et al., 2005; Meda et al., 2008; Ashburner, 2009). How-
ever, voxel-wise methods often suffer from low statistical power and
more importantly, ignore multivariate relationships in the data.
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2 The term semi-supervised is in reference to lack of disease subtype labels thatmust be
inferred from data.

347E. Varol et al. / NeuroImage 145 (2017) 346–364
On the other hand, MVPA techniques have gained significant atten-
tion due to their ability to capture complex relationships of imaging sig-
nals among brain regions. This property allows to better characterize
group differences and could potentially lead to improved diagnosis
and personalized prognosis. As a consequence, machine learning
methods have been used with increased success to derive highly sensi-
tive and specific biomarkers of diseases on individual basis (Mourão
Miranda et al., 2005; Klöppel et al., 2008; Davatzikos et al., 2008;
Vemuri et al., 2008; Duchesne et al., 2008; Sabuncu et al., 2009;
McEvoy et al., 2009; Ecker et al., 2010; Hinrichs et al., 2011; Cuingnet
et al., 2011).

A common assumption behind both VBA and MVPA methods is that
there is a single pattern that distinguishes the two contrasted groups. In
otherwords, most computational neuroimaging analyses assume a single
unifying pathophysiological process and perform a monistic analysis to
identify it. However, this approach ignores the heterogeneous nature of
diseases, which is supported by ample evidence. Typical examples of
brain disorders that are characterized by a heterogeneous clinical presen-
tation include both neurodevelopmental and neurodegenerative disor-
ders: autism spectrum disorder (ASD) comprises neurodevelopmental
disorders characterized by deficits in social communication and repetitive
behaviors (Geschwind and Levitt, 2007; Jeste and Geschwind, 2014);
schizophrenia and Parkinson's disease can be subdivided into distinct
groups by separating its symptomatology to discrete symptom domains
(Buchanan and Carpenter, 1994; Graham and Sagar, 1999; Koutsouleris
et al., 2008; Nenadic et al., 2010; Zhang et al., 2015; Lewis et al., 2005);
Alzheimer's disease (AD) can be separated into three subtypes on the
basis of the distribution of neurofibrillary tangles (Murray et al., 2011);
and mild cognitive impairment (MCI) may be further classified based
on the type of specific cognitive impairment (Huang et al., 2003;
Whitwell et al., 2007).

Disentangling disease heterogeneity may significantly contribute to
our understanding and lead to a more accurate diagnosis, prognosis
and targeted treatment. However, few research efforts have been fo-
cused on revealing the inherent disease heterogeneity. These ap-
proaches can be categorized into two distinct classes. The first class
assumes an a priori subdivision of the diseased samples into coherent
groups, based on independent (e.g., clinical) criteria, and opts to identify
group-level anatomical or functional differences using univariate statis-
tical methods (Huang et al., 2003; Koutsouleris et al., 2008; Nenadic
et al., 2010;Whitwell et al., 2012; Zhang et al., 2015). As a consequence,
multivariate relationships in the data are ignored. Moreover, and more
importantly, these methods depend on an a priori disease subtype def-
inition, which may be either difficult to obtain (e.g., from autopsy near
the date of imaging), or noisy and non-specific (e.g., cognitive or clinical
evaluations). Methods belonging to the second class apply multivariate
clustering (typically driven by all image elements) directly to the dis-
eased population towards segregating subsets of distinct anatomical
subtypes (Graham and Sagar, 1999; Whitwell et al., 2007; Lewis et al.,
2005; Noh et al., 2014). Such an approach aims to cluster brain anato-
mies instead of pathological patterns. Thus, it has the potential risk of
estimating clusters that reflect normal inter-individual variability,
some of which is due to sex, age and other confounds, instead of
highlighting disease heterogeneity.

In order to tackle the aforementioned limitations, it is necessary to
develop a principled machine learning approach that is able to simulta-
neously identify a class of pathological samples and separate them into
coherent subgroups based onmultivariate pathological patterns. To the
best of our knowledge, one approach has been previously proposed in
this direction (Filipovych et al., 2012). That work tackled disease sub-
type discovery by simultaneously solving classification and clustering
in a semi-supervised maximummargin framework. It jointly estimated
two hyperplanes, one that separates the diseased population from the
healthy one, and another hyperplane that splits the estimated diseased
population into two groups. Thus, only one linear classifier was used to
separate patients from controls, thereby limiting its ability to capture
heterogeneous pathologic processes. Moreover, it arbitrarily assumed
that exactly two disease subgroups exist, rather than attempting to de-
termine the number of subtypes from the data.

Here, we propose a novel non-linear semi-supervised2 machine
learning algorithm for integrated binary classification and subpopula-
tion clustering aiming to reveal heterogeneity through discriminant
analysis (HYDRA). To the best of our knowledge, ours is the first algo-
rithm to deal with anatomical/genetic heterogeneity in a supervised-
clustering fashion with arbitrary number of clusters. The proposed ap-
proach is motivated by recent machine learning methods that derive
non-linear classifiers through the use of multiple-hyperplanes (Fu
et al., 2010; Gu and Han, 2013; Varol and Davatzikos, 2014;
Kantchelian et al., 2014; Takács, 2009; Osadchy et al., 2015). Classifica-
tion is performed through the separation of healthy controls from path-
ological samples by a convex polytope that is formed by combining
multiple linear max-margin classifiers. Heterogeneity is disentangled
by implicitly clustering pathologic samples through their association
to single linear sub-classifiers. Multiple dimensions of heterogeneity
may be captured by varying the number of estimated hyperplanes
(faces of the polytope). This is in contrast to non-linear kernel classifica-
tion methods which may accurately fit to heterogeneous data in terms
of disease prediction, but do not provide any explicit clustering informa-
tion that can be used to determine subtypes of pathology. HYDRA is a
hybrid between unsupervised clustering and supervised classification
methods; it can simultaneously fit maximum margin classification
boundaries and elucidate disease subtypes, which is not possible with
neither unsupervised clustering methods nor non-linear kernel
classifiers.

Note that a preliminary version of this workwas presented in (Varol
et al., 2015). The current paper extends our previous work in multiple
ways: (i) A more sophisticated initialization scheme based on
determinental point processes is employed (Sec. Appendix A.1); (ii)
the sensitivity to initialization due to the non-convexity of the objective
function has been improved by using multiple initializations and con-
sensus strategies (Sec. Appendix A.4); (iii) a symmetric version of the
algorithm is developed towards accounting for the heterogeneity of
the healthy controls and avoiding over-learning (Section 2.4); (iv) a de-
tailed description of the proposed methodology is provided; (v) we ex-
tensively evaluate our method, HYDRA, by using additional (imaging
and genetic) datasets and comparing it to unsupervised clustering and
non-linear classification methods.

The remainder of this paper is organized as follows. In Section 2, we
detail the proposed approach. Next, we experimentally validate our
method using synthetic (Section3) and clinical (Section 4) data.Wedis-
cuss the results in Section 5, while Section 6 concludes the paper with
our final remarks.
Method

In high dimensional spaces, the modeling capacity of linear support
vectormachines (SVMs) is theoretically rich enough to discriminate be-
tween two homogeneous classes. However, while two classes are line-
arly separable with high probability, the resulting margin may be
small. This case arises, for example, when one class is generated by a
multimodal distribution that models a heterogeneous process (see
Fig. 1a). This may be remedied by the use of non-linear classifiers,
allowing for larger margins and thus, better generalization. However,
while kernel methods, such as Gaussian radial basis function (GRBF)
kernel SVM, provide non-linearity, they lack interpretability when
aiming to characterize heterogeneity.



(a) (b) (c)

Fig. 1. Illustrating the effect of heterogeneitywhen separating a positive class (denoted by gray squares) from a heterogeneous negative class (denoted by red rhombuses). (a) Linear SVM
separates the positive class from a heterogeneous negative class (presence of two clusters) by a smallmargin. (b) Ourmethod classifies each cluster separately, resulting in a largermargin.
(c) Heterogeneity introduced by the presence of three clustersmodeling distinct deviations fromnormality. Each deviation is captured by a different face of the convex polytope. Solid lines
correspond to the classifier, dashed lines indicate the margin while highlighted linear segments define the separating convex polytope.
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Here, we take advantage of the previous intuition to design a novel
machine learning technique that will provide larger margins while
being able to elucidate heterogeneity. We introduce non-linearity
using multiple linear classifiers that form locally linear hyperplanes
whose linear segments separate the clusters of negative samples from
the positive class (see Fig. 1b). In this way, subjects are explicitly clus-
tered by being assigned to different hyperplanes, giving rise to inter-
pretable directions of variability that may be useful in discovering
heterogeneity.

Suppose that our dataset consists of n binary labelled d-dimensional
data points ðD ¼ ðxi; yiÞni¼1; xi∈ℝ

d and yi∈f−1;1gÞ . Without loss of
generality, we assign the negative class to the pathological population
whose heterogeneity we seek to reveal. Let us note that while there
may be heterogeneity in the healthy population, we focus here on re-
vealing disease heterogeneity. Our aim is twofold. First, we aim to esti-
mate k hyperplanes that form a convex polytope that separates the two
classes with a large margin. Second, we aim to assign each pathological
sample to the hyperplane that best separates it from the normal con-
trols. Themain idea is that samples that belong to different pathological
subgroups will be assigned to different hyperplanes, each of which re-
flects a respective pathological process (see Fig. 1c). Towards fulfilling
the aforementioned aims, we introduce the proposed approach by ex-
tending standard linear maximum margin classifiers.

Large margin classification

For completeness, let us briefly introduce standard linear maximum
margin classifiers.Maximummargin classifiers aim to estimate a hyper-
plane that separates the two classes by a half space, while ensuring that
the distance (or margin) from the decision boundary for each sample is
maximized. More formally, suppose that the set F comprises the set of
all linear classifiers w such that for the given dataset D all samples are
correctly classified, or∀ i ,yi(wTxi)+b≥1. The goal is tofind the classifier
w belonging to the set F that maximizes the margin between classes.
The margin is defined as the orthogonal distance between the two hy-
perplanes:

wTuþ b ¼ −1; and wTv þ b ¼ þ1;

where the set of points u, v that satisfy the equations, represent points
from both classes with active constraints. Notice that setting u ¼ − 1þb

kwk22
w and v ¼ 1−b

kwk22
w satisfies the previous equations. Since u, v are parallel,

the orthogonal distance between the hyperplanes is simply ku−vk2 ¼
2

kwk2, which is the margin for SVM (Vapnik, 2000).
The optimal classifier is estimated by solving an optimization prob-

lem. However, instead of maximizing the margin, its inverse ðkwk22
2 Þ is

typically minimized subject to the separability constraints. This results
in the well known SVM objective:

minimize
w;b;ξ

wk k22
2

þ C
Xn
i¼1

ξi

subject to

yi w
Txi þ b

� �
≥1−ξi and ξi≥0

where ξ=(ξ1,… ,ξn). The second term of the objective ðC∑n
i¼1ξiÞ ac-

counts for slack when classes are non-separable.

Convex polytope classification

Standard SVMs assume that there is a single pattern (encoded by
the estimated hyperplane) that distinguishes the two classes. How-
ever, this assumption is violated in the case of heterogeneity. We
aim to model heterogeneity by utilising multiple linear hyperplanes,
each one corresponding to a different pathological pattern. By com-
bining multiple linear classifiers in a piecewise fashion, we extend
linear max-margin classifiers to the non-linear case. Thus, we con-
sider the extended hypothesis class that consists of the set of sets
of K hyperplanes, generalizing the geometry of the classifier to that
of a convex polytope (Takács, 2009). Due to the interior/exterior
asymmetry of the polytope, it is necessary to confine one class to
its interior while restricting the other class to its exterior. Without
loss of generality, we confine the positive class to the interior of the
polytope. Thus, the search space FK is defined as

FK≜ w j; bj
� �K

j¼1 ∀ j;wT
j xi þ bj ≥1 if yi ¼ þ1;

���n
∃ j : wT

j xi þ bj ≤−1 if yi ¼ −1
o
:

In other words, FK comprises all sets of K classifiers such that all
classifiers correctly classify all members of the positive class, while
for every negative sample, there is at least one classifier that correct-
ly classifies it.

The latter gives rise to an assignment problem, where samples that
have been affected by the same pathological process are assigned to
the same hyperplane. This can also be seen as a clustering task since
samples that have been assigned to the same hyperplane can be equiv-
alently considered as clustered together. Thus, if S−=[si , j]∈{0,1}n

−×K

denotes the binary matrix that describes the assignment of the i-th
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negative class sample (n− in number) to the j-th face of the polytope,
then the search space becomes:

FK S−ð Þ≜ w j; bj
� �K

j¼1 ∀ j;wT
j xi þ bj ≥1 if yi ¼ þ1;

���n
wT

j xi þ bj≤−1 if yi ¼ −1 and si; j ¼ 1
o
:

Given the assignment S−, there are Kmargins; each one correspond-
ing to one face of the polytope. Analogous to the SVM formulation, the
margin for the j-th face of the polytope is 2

kw jk2 . However, due to the

piecewise nature of the convex polytope, there are multiple notions of
margin for the surface of the polytope. In this work, aiming to keep
the problem tractable, we maximize the average margin across all the

faces of the polytope: m ¼ 1
K ∑

K
j¼1

2
kw jk2

. Thus, for a given dataset D
and assignment S− for the negative class, the objective becomes:

maximize
w j ;b jf gK

j¼1

1
K

XK
j¼1

2
w j
�� ��

2

subject to

wT
j xi þ bj ≥1

wT
j xi þ bj ≤−1

if yi ¼ þ1 for j ¼ 1;…;K
if yi ¼ −1 and si; j ¼ 1

Note that, given the assignments, the objective and the constraints
are separable into K-independent subproblems. Each subproblem is
analogous to the SVM formulation after adding the slack terms ξi ,j, or

minimize
w j ;b j ;ξ j

w j
�� ��2

2

2
þ C

Xn
i¼1

ξi; j

subject to

wT
j xi þ bj ≥1−ξi; j if yi ¼ þ1

wT
j xi þ bj ≤−1þ ξi; j if yi ¼ −1 and si; j ¼ 1

ξi; j≥0 for i ¼ 1;…;n

where C is a penalty parameter on the training error. If we now use the
definition of the slack terms as ξi ,j=max{0,1–yi(wj

Txi+bj)}, and con-
sider all hyperplanes ({W,b}≜{wj,bj}j=1

K ) at the same time, we get:

minimize
w j ;b jf gK

j¼1

XK
j¼1

w j
�� ��2

2

2
þ C

X
i yi ¼ þ1j

j

1
K

max 0;1−wT
j xi−bj

n o

þ C
X

i yi ¼ −1j
j

si; j max 0;1þwT
j xi þ bj

n o ð1Þ

So far, we have assumed that the assignment matrix S− is known.
However, this is not the case in practice and S− has to be estimated too.

Attempting to solve for both {W,b} and S− results in a non-convex
objective function which is combinatorially difficult to optimize. Fur-
thermore, optimization for the binary assignment S− is itself non-
convex since it constitutes an integer programming task. To make the
problem tractable, we take two steps. First, we relax the binary assign-
ment (si , j∈ {0,1}) to a soft assignment (si , j∈ [0,1] ,∑j=1

K si , j=1, ∀ i).
Given this relaxation, the objective becomes block-wise convexwith re-
spect to the groups of variables {W,b} and {S−}. We then use this re-
laxed objective function to obtain locally optimal solutions by
iteratively solving for {W,b} and {S−}. The details of the iterative optimi-
zation are given in Appendix A.
Prediction
Once the polytope classifier {W,b} is trained, predicting the class y⁎

of a new instance x⁎ is straightforward:

y� ¼ sign min
j

wT
j x

� þ bj

� 	

In otherwords, if x⁎ is in the interior of the polytope defined by the es-
timated hyperplanes ({W,b}), then it is classified as positive by all classi-
fiers corresponding to the faces of the polytope (wj

Tx⁎+bjN0), resulting
in an overall positive class prediction (y⁎=+1). Otherwise, if x⁎ is in
the exterior of the polytope, then it is classified as negative by at least
one classifier corresponding to a face of the polytope (wj

Tx⁎+bjb0),
resulting in an overall negative class prediction (y⁎= –1). Analogously,
the prediction score is simply the minimum of the prediction scores of
all classifiers corresponding to the faces of the polytope: (min

j
wT

j x
� þ

bj). Moreover, a new sample may be assigned to the existing clusters by
computing the assignment index s⁎,j using Eq. (A.1).

HYDRA algorithm

Given the solutions of {W,b} and S− outlined in Sec. Appendix A.2
and Sec. Appendix A.3, we solve for the maximum margin convex
polytope in an iterative fashion. This is the main workhorse behind
the proposed framework that aims to elucidate heterogeneity through
discriminative analysis (HYDRA) and is outlined in Algorithm1. Howev-
er, due to the non-convex nature of the problem, it is necessary to take
additional steps to ensure the high quality of the solution.

Our approach towards enhancing the quality of the solution is
twofold. First, particular care is taken to initialize the iterative algo-
rithm in such a way that clustering solutions that exhibit disease-
related diversity are promoted. This is made possible by employing
determinental point processes (DPP) (Kulesza and Taskar, 2012) to
sample diverse directions of pathology, which can subsequently be
used to estimate the initial clustering assignments (see Appendix
A.1 for details).

Second, acknowledging the fact that, in non-convex settings, the
estimated solution may vary greatly depending on the initialization,
we employ a multi-initialization strategy that is coupled with a fu-
sion step. Multiple runs of the Algorithm 1 are performed using dif-
ferent initializations generated by the previously described DPP
sampling process, as well as different subsets of the population.
The estimated clusters constitute hypotheses that capture perturba-
tions of the underlying group topography. These clustering hypothe-
ses are aggregated by taking into account the consensus of the
respective solutions, producing the final clustering result that is
free of noisy perturbations and emphasizes the underlying group
structure (see Appendix A.4 for details).

Algorithm 1. HYDRA

Input: XaRn�d, y a {–1,+1}n (training signals), C (loss penalty), K
(number of clusters/hyperplanes)

Output: W aRd�K, baR1�K (Classifier); S− a [0,1]n
−×K (Clustering

Assignment)

Initialization: Initialize S− by Algorithm 2

Loop: Repeat until convergence (or a fixed number of iterations)
• Fix S−, Solve forW ,b byweighted LIBSVM (sampleweights
set by Eq. (A.2))

• Fix W ,b — , Solve for S− using Eq. (A.1)



(a) (b) (c)

(d) (e) (f)

Fig. 2. Positive (squares) and negative (rhombuses) instances in a continuous two-dimensional feature space. Instances of the two classes either (a) overlap and are not linearly separable,
or (b) are highly separable. Linear SVM is used to classify the low (b) and high (e) separability toy dataset. Similarly, HYDRA (K==2) is applied to the low (c) and high (f) separability toy
dataset. Dark gray lines correspond to the estimated separating hyperplanes, while light gray lines denote the estimated margins. Note the increase of the margin that is made possible
through the use of multiple linear classifiers that form a convex polytope denoted by the highlighted line segments. The classes, as well as the estimated subgroups, are encoded using
different colors.
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Symmetric HYDRA algorithm

The algorithm that we have so far outlined is asymmetric. The pa-
tients lie on the exterior of the polytope while the controls are
constrained on the interior of the polytope. This property may result
in over-fitting when classifying. This can be remedied by symmetrizing
the algorithm. One can run the Algorithm 1 twice, once using the actual
labels Y and once using the negated labels: –Y. In that case, one can use
the estimated output polytopes [W+,b+] and [W–, b–] to make predic-
tions using the following formula:

y� ¼ sign min
j

wþ
j
Tx� þ bþj

� 	
− min

j
w−

j
Tx� þ b−j

� 	� 	
; ð2Þ

where both classifiers are taken into account.
Note that the symmetric model does not affect the clustering of the

patients since the two runs of Algorithm 1 are independent of each
other. The difference is that the symmetric model provides two cluster-
ings, one for the patients and one for the controls.

Experiments using simulated data

We first validated the proposed method using synthetic data. We
used a two-dimensional toy dataset to provide insight into theworkings
of the proposed approach. Then, we quantitatively validated the pro-
posed approach against common clustering and classification ap-
proaches in a simulated dataset where heterogeneity has been
introduced. We evaluated the ability of HYDRA to distinguish between
two classes and demonstrated its potential to reveal relevant subgroups.

Let us note that for all experiments, the classificationwas performed
using the symmetric version of HYDRA, while the clustering of the neg-
ative classwas used to reveal disease heterogeneity. The final clustering
was the consensus result of twenty repetitions. The primal formulation
was employed when tackling low-dimensional data, while the dual
formulation was preferred in the case of high-dimensional data (see
Appendix B.1 for the dual formulation).

Toy example

To illustrate the behavior of our method, we generated a synthetic
two-dimensional dataset with thousand instances (see Fig. 2). The
first half of the samples were drawn from a unimodal distribution, sim-
ulating the healthy control population (denoted by magenta squares).
The other half consisted of a crescent-shaped cluster of points, corre-
sponding to the heterogeneous disease group (denoted by rhombuses
colored using different variants of blue). To provide amore comprehen-
sive setting, we additionally considered two different separability cases
between the two populations. In the first case (see Fig. 2a), the two clas-
ses overlapped highly, resulting in low separability. In the second case
(see Fig. 2d), the two groups did not overlap and were separated by a
significant margin, thus increasing separability.

To further clarify the advantages of the proposed framework, we
compared the performance of HYDRA (using two hyperplanes, K=2)
against the performance of standard linear SVM. The results of the ex-
periments are shown in Fig. 2. There are two important observations
to make. First, the introduced non-linearity in HYDRA allows for im-
proved separability between the two groups in both scenarios (see
Figs. 2b, c, e and f). This increase is more important in the case of low-
separability between classes (see Figs. 2b and c), where the linear
SVMwas not able to fully separate them. In the case of high separability,
the hyperplane that was estimated by the linear SVM effectively sepa-
rated positive from negative samples. However, it did so by a relatively
small margin (see Fig. 2b). On the other hand, HYDRA harnessed the
non-linear structure of the data and separated themwith a highmargin
that led to improved generalization performance (see Fig. 2f).

Second, and most importantly, HYDRA separated the negative class
into two subgroups that differ from the positive class in two distinct di-
rections. This clustering is directly related to the hyperplanes that
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Fig. 3. (a) Patterns of simulated heterogeneity. Mean difference images between the positive class and the three negative class subgroups, respectively. (b) The results that were obtained
using HYDRA (K=3) are visualized by performing group comparison between each estimated subgroup and the positive class. The negative logarithmof the estimated p-values is shown.
(c) Similarly, the groups thatwere obtained using K-means (K=3) are reported. Note that the groups estimated by HYDRA capture distinct focal effects that alignwell with the simulated
ones, while the ones estimated by K-means mix the focal effects and recapitulate different stages of disease progression.
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separate the two classes. As a consequence, the obtained clustering is
obtained in a supervised fashion and thus, it is driven by discriminating
patterns that capture disease heterogeneity. This is in contrast to stan-
dard clustering techniques that group together samples based on ap-
pearance, which is not necessarily related to disease variability.

Simulated high-dimensional heterogeneous data

Despite ample evidence of disease heterogeneity, the lack of labeled
ground-truth poses a fundamental obstacle in validating the proposed
approach. Thus, to overcome these limitations, we construct a simulated
validation setting that allows for quantitative comparisons with other
algorithms.

Aiming to replicate the common high-dimensional low sample size
regime that is prevalent in neuroimaging studies, we generated a syn-
thetic dataset with three hundred instances (or subjects) that are sam-
pled as images with features on a 64×64 grid. The positive class
(healthy group) was generated by randomly sampling 150 samples
from a multivariate unimodal Gaussian distribution with zero mean
and unit variance (Nð0;1Þ). The negative class (disease group)was gen-
erated by drawing 150 samples from a tri-modal distribution, where
each mode simulates a different focus of disease progression (see
Fig. 3a). Each focal effect had a radius of 10 pixels, with a variance of
0.5 units. To simulate the effect of disease progression, an age effect
was simulated. This was generated by adding unit variance random
noise to simulate progression. Therefore, there were three distinct
focal effects in each subgroup, the subgroup specific effectwith variance
1.5 units and the non-specific effects with unit variance. Additionally,
10% of the labels were mislabeled to simulate misdiagnosis and label
noise.

Validation measures
HYDRA is in principle an exploratory analysis tool, aiming to reveal

disease heterogeneity. However, it operates by simultaneously
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performing classification and clustering. Thus, it is of interest to under-
stand how well the proposed method accomplishes each step.

To validate the classification performance, we computed the area
under the receiver operating characteristic curve (AUC) (Bradley,
1997). The AUC statistic summarizes the quality of the performance of
a binary classifier. It is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly cho-
sen negative one. Thus, anAUC equal to one indicates a perfect classifier.
We calculated a distribution of AUC values by performing 100 realiza-
tions of 10-fold cross-validation. During each iteration, the data were
partitioned into ten folds. Each fold was successively used as a test set
while the remaining folds were used to train the method. The optimal
parameter C of the method was estimated by performing a grid search
over C∈{2-5,… ,23} using an internal round of 10-fold cross-validation.

The clustering performance of our approach was assessed by taking
into account the stability of the obtained results. The adjusted Rand
index (ARI) (Hubert and Arabie, 1985)was used to quantify the similar-
ity between different clustering results. This index is corrected for
grouping by chance, resulting in a more conservative estimation of the
overlap. A value equal to one indicates a perfect clustering. We calculat-
ed the ARI in a cross-validated fashion, following the previously de-
scribed cross-validation scheme. However, in our calculations, we took
into account only the clustering stability between training folds. Any
pair of training folds shared 80% of the subjects, allowing us to compute
how consistently the common subjectswere placed in the same clusters
despite the variations due to the ~10% difference in the sample compo-
sition across folds. In detail, given the optimal C value that was estimat-
ed during the inner-fold cross-validation, we trained the model,
yielding a clustering of thenegative subjects in the training set. This pro-
cedure was repeated for all realizations of the 10-fold cross-validation,
yielding a set of clusterings of the negative subjects of the respective
training sets. Finally, we computed the average pairwise ARI between
the estimated clusterings.

Let us note that the classification accuracy and the clustering stabil-
ity are only surrogatemeasures that allow us to elucidate the underpin-
nings of the proposed method. HYDRA does not directly target
increased classification accuracy, but instead it focuses on detecting dis-
ease subgroups. Moreover, while clustering stability is desirable, it does
not necessarily imply that the estimated clusters correspond to the un-
derlying heterogeneity. Quantitatively evaluating the relevance of the
clustering to the intrinsic heterogeneity is in general not feasible. How-
ever, in this simulated scenario, the ground truth was available by de-
fault. Thus, we calculated the ARI between the estimated clusters and
the simulated ones. Moreover, to further assess the performance, we
conducted group analysis between the estimated subgroups and the
positive class. The derived p-value maps allow for the visualization of
the estimated clusters and their comparison to the generated ones.

Comparison with existing methods
To further validate HYDRA,we compared it to common classification

and clustering approaches.
As far as classification is concerned, we first compared our method

against linear SVMs. In fact, our method is a generalization of the linear
SVM framework. By setting the parameter K equal to one, our method
reduces to a linear SVM classifier. Parameter selection (i.e., fixing C
value) was performed using the same strategy as the one for the pro-
posed framework.

Moreover, because HYDRA establishes a non-linear separation
boundary between the two classes, we contrasted its performance
against the GRBF kernel SVM. The free parameters were determined
through a nested cross-validation strategy. A grid searchwas performed
over the parameter space defined by the regularization parameter C
(C∈{2–5,… ,23}) and the parameter σ that controls the bandwidth of
the RBF kernel (σ∈{2–5,… ,23}).

Verifying that HYDRA achieves comparable accuracy with common-
ly used classifiers, thus retaining discriminative power, is important
because discrimination is inextricably tied to the cluster definition.
However, the main focus of the method is on discovering clusters in
the abnormal cohort. To validate the clustering potential of our frame-
work, we included the performance of the K-means clustering (Lloyd,
1982) (20 replicates were used). We also examined the potential of
the approach that performs classificationon top of the clustering results.
In particular, we first used K-means to cluster samples from one class
and then trained a linear SVM for each cluster. This procedure was per-
formed for both thenegative and positive classes. The out of sample pre-
dictionwas obtained using Eq. (2). This approach (Gu and Han, 2013) is
termed here K–means/SVM. Similar to the previous cases, nested cross-
validation was performed for selecting the C parameter. Note also that
we run K-means and HYDRA for the same value of the parameter K
that varied from one to nine (K∈{1,… ,9}).
Results
The results of the cross-validated classification accuracy are reported

in Fig. 4a. We note that the classification results depend on the value of
the parameter K. The high dimension and low sample size setting
allowed linear SVM to separate the two classes with high accuracy.
However, the non-linearity that is introduced by Gaussian SVM, as
well as by HYDRA and K-means/SVM, resulted in a slight improvement
in the classification performance (see also Table 1). We should under-
line that a statistically significant improvement of the performance
was observed only for HYDRA results (p-value for t-test comparison be-
tween K=3 HYDRA results and linear SVM equals to 0.016). Lastly, we
observe that the classification accuracy that was obtained by HYDRA
peaks at K=3 and relatively decreases for higher values of K. This indi-
cates that HYDRA was able to correctly estimate the intrinsic dimen-
sionality of the pathological class.

As far as the clustering reproducibility is concerned, we note a
significant difference between HYDRA and K-means (see Fig. 4b).
Note that K-means obtained the highest reproducibility, yet the esti-
mated clusters did not reflect the simulated focal effects. K-means
consistently grouped the data into two clusters, while HYDRA segre-
gated the data with higher stability into three subgroups (see also
Table 1). The importance of this difference was further emphasized
by the fact that K-means results were significantly different from
the HYDRA clustering. HYDRA clusters overlapped highly with the
simulated ones while K-means results did not match the generated
subgroups (see Table 1). This is because K-means, being blind to
class information, was driven by global patterns that were confound-
ed by the variations stemming from covariate effects rather than rel-
evant heterogeneity. On the contrary, HYDRAwas able to identify the
heterogeneous groups by exploiting patterns that encode directions
along which the two groups differ.

To further appraise thedifferences between the twomethods,we re-
port in Figs. 3b and c the group differences between the positive class
and the three subgroups K-means and HYDRA estimated, respectively.
By visually comparing them to the group differences for the simulated
groups (see Fig. 3a), we observe that HYDRA recovered the three
modes of differences with high certainty. Contrarily, K-means captured
global effects that reflect the overall progression of the simulated pa-
thology (note the relevant increase of the group differences in Fig. 3c),
instead of teasing out distinct pathological directions.

Our synthetic validation setting provides two key insights. First,
while all methods were able to successfully separate the two groups,
only HYDRA was able to distinguish between pathological sub-
groups. Thus, to effectively disentangle disease heterogeneity, one
should focus on discriminating patterns rather than global image ap-
pearance. Second, and most importantly, analyzing the clustering
stability allows for the estimation of the intrinsic dimensionality of
the pathological group. Therefore, we adopt hereafter this popular
approach (Ben-Hur et al., 2002; Lange et al., 2004) to perform
model selection.
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Fig. 4. Simulated data results: (a) cross-validated AUC forHYDRA (left) and K-means/SVM (right) binary classification. (b) Cross-validatedARI for the clustering result of HYDRA (left) and
K-means (right). The results are reported for different values of the parameter K. Error bars are centered around the mean and indicate variance. Both the classification accuracy and the
cluster stability were maximized at K=3 for HYDRA, agreeing with the intrinsic dimensionality of the heterogeneous group. The classification accuracy obtained by K-means/SVM
remained relatively stable for different values of K. However, the clustering stability was maximized for K=2, demonstrating that higher reproducibility does not necessarily imply suc-
cessful heterogeneity detection.

353E. Varol et al. / NeuroImage 145 (2017) 346–364
Experiments using clinical data

Having shown interest in the proposed approach using synthetic
data, we next applied our method to data from the Alzheimer's Disease
Neuroimaging Initiative3 (ADNI). The ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator, Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, clinical and neuropsychological assess-
ment can be combined tomeasure the progression ofmild cognitive im-
pairment and early Alzheimer's disease.4 Here, our goal was to
investigate both the anatomical and the genetic heterogeneity in
Alzheimer's disease.

Visualization of heterogeneity

Anatomical heterogeneity
To visualize the neuroanatomical heterogeneity of both the anatom-

ically and genetically defined disease clusters, voxel-based analyses
(VBA) were performed between the controls and patient groups.

To perform VBA,MRI scans were first pre-processed using previous-
ly validated and published techniques (Goldszal et al., 1998). The
3 adni.loni.usc.edu.
4 www.adni-info.org.
preprocessing pipeline includes: (1) alignment to the anterior and pos-
terior commissures plane; (2) skull-stripping (Doshi et al., 2013);
(3) N3 bias correction (Sled et al., 1998); (4) tissue segmentation into
gray matter (GM), white matter, cerebrospinal fluid and ventricles
using MICO (Li et al., 2014); (5) deformable mapping (Ou et al., 2011)
to a standardized template space (Kabani et al., 1998); (6) formation
of regional volumetric maps called RAVENS maps (Davatzikos et al.,
2001), generated to enable analyses of volume data rather than raw
structural data; (7) the RAVENSwere normalized by individual intracra-
nial volume to adjust for global differences in intracranial size, and
smoothed for incorporation of neighborhood information using an 8-
mm full-width at half-maximum Gaussian filter.

TheGMRAVENSwere used for all VBA experiments, where a general
linear model (GLM) was applied voxel-wise to estimate the disease ef-
fect on the voxel value using age and sex as covariates. False discovery
rate (FDR) correction for multiple comparisons was used for all voxel-
based analyses. Only results surviving the statistical threshold at
qb0.05 are shown.
Genetic heterogeneity
In addition to anatomical heterogeneity, the genetic differences be-

tween the subgroups of ADwere assessed by performing ANOVA on ge-
netic markers, followed by a Bonferroni test for multiple comparisons.
Only results surviving the statistical threshold at qb0.05 are reported.

http://www.adni-info.org


Table 1
Table summarizing the results for the simulated dataset. Cross-validated classification accuracy is reported for Gaussian SVM, linear SVM, HYDRA and K-means/SVM. Cross-validated clus-
ter stability and overlap with the ground truth are reported for HYDRA and K-means. * denotes the value of the parameter K that was chosen based on the cluster stability analysis. All
models achieved comparable classification performance in terms of AUC. However, HYDRA was able to correctly identify the ground truth clusters. Note that while K-means achieved
the highest reproducibility, it estimated clusters that did not correspond to the generated focal effects.

Decoding simulated focal effects

Data Method K AUC ARI ARI with ground truth

Synthetic data Gaussian SVM – 0.9327 ± 0.0368 – –
Linear SVM 1 0.9258 ± 0.0498 – –
HYDRA 2 0.9404 ± 0.0471 0.1353 ± 0.1464 0.3487

3* 0.9423 ± 0.0460 0.3620 ± 0.1514 0.6175
K-means/SVM 2* 0.9347 ± 0.0484 0.8237 ± 0.0641 −0.0076

3 0.9369 ± 0.0470 0.3235 ± 0.0985 0.0233

Table 2
Demographic and clinical characteristics of healthy controls (CN), AD patients (left) and the estimated structural MRI-driven subtypes of AD (right). MMSE stands for mini-mental state
examination score. a, Denotes subjects with at least one APOE ε4 allele present. b, Denotes the cerebrospinal fluid (CSF) concentrations of amyloid-beta 1 to 42 peptide (Aβ), total tau (t-
tau), and tau phosphorylated at the threonine 181 (p-tau). c, p-value estimated using two-tailed t-test to compare ADwith CN. d, p-value estimated using analysis of variance (ANOVA) to
compare the three estimated AD subgroups.

Anatomic heterogeneity in Alzheimer's disease

AD vs. CN (n=300) AD subgroups (n=123)

CN (n=177) AD (n=123) p‐valuec Group 1 (n=29) Group 2 (n=63) Group 3 (n=31) p‐valued

Age (years) 75.87 ± 5.18 74.66 ± 7.39 0.09 78.93 ± 5.75 73.70 ± 7.63 72.61 ± 6.85 0.0011
Sex (female), n (%) 87 (49.15) 62 (50.4) 0.83 8 (27.5) 32 (50.7) 22 (70.9) 0.0031
MMSE 29.12 ± 1.03 23.57 ± 1.88 1.01e-100 23.96 ± 1.97 23.15 ± 1.99 24.06 ± 1.34 0.0388
APOE4 genotypea, n (%) 48 (27.12) 82 (66.67) 1.71e-12 21 (72.41) 38 (60.32) 23 (74.19) 0.3121
CSF Aβ (pg/mL) b 209.2 ± 53.92 143.2 ± 42.29 1.468e-14 157.3 ± 49.49 144 ± 42.59 127.9 ± 28.66 0.09907
CSF t-tau (pg/mL) b 68.21 ± 24.66 122.5 ± 58.07 2.865e-13 97.37 ± 40.17 127.4 ± 55.16 139.4 ± 71.27 0.06547
CSF p-tau (pg/mL) b 24.36 ± 13.64 40.79 ± 19.11 2.102e-09 31.26 ± 10.76 44.91 ± 23.18 42.95 ± 14.4 0.03558
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Anatomical heterogeneity of Alzheimer's disease

Participants and MRI data preprocessing
The first dataset comprises MRI scans that were made available by

the ADNI study.5 T1-weighted MRI volumetric scans were obtained at
1.5 T for 123 AD patients and 177 normal controls (CN) (see demo-
graphic information given in Table 2).

A low-level representation was extracted by automatically
partitioning the MRI scans of all participants into 153 ROIs spanning
the entire brain. The ROI segmentation was performed by applying a
new multi-atlas label fusion method (Doshi et al., 2016). The derived
ROIs were used as features for all clustering and classification methods.

Correction for age and sex effects. To remove age and sex related differ-
ences between patient groups while retaining disease-associated neu-
roanatomical variation, the strategy outlined in (Dukart et al., 2011)
was used. Within each cross-validation training fold, we calculated
voxel-level β-coefficients for age and sex in control subjects' ROIs
using partial correlation analysis. Then, all subjects were residualized
using these coefficients to correct for age and sex effects not attributable
to disease related factors.

Evaluation of results for structural MRI AD data
Classification results are reported in Fig. 5a. The standard linear SVM

achieved a highly accurate classification performance (AUC for K=1 is
greater than 0.9), which emphasizes the high separability between AD
patients and healthy controls. Similar to linear SVM, HYDRA was able
to separate the two groups with high accuracy but, contrary to the sim-
ulated case, it did not improve on the results of linear SVM. This is most
likely because the data were already linearly separable. However, the
classification performance of the proposed method remained relatively
stable for different values of K (no statistically significant differences
5 http://adni.loni.usc.edu/data-samples/mri/.
between the results were found), demonstrating that HYDRA was able
to retain the important discriminative information that is necessary
for disease subtype clustering. Furthermore, the stable AUC at K≥2
may indicate a possible plateau in the AD vs. control classification rate
(Cuingnet et al., 2011). Lastly, we should emphasize that HYDRA aims
to increase the margin with K, which is indeed achieved (see Supple-
mentary material). This has two important implications: (i) that there
is heterogeneity in the data; and (ii) that HYDRA successfully harnesses
this heterogeneity to improve the margin.

The clustering stability results are presented in Fig. 5b, while the
AUC and ARI values for the HYDRA model at K=1,2 ,3 are given in
Table 3. The stability analysis suggests that three clusters are appropri-
ate for capturing the intrinsic dimensionality for representing the dis-
ease heterogeneity. At finer levels (higher values of K), these three
clusters are partitioned into smaller clusters, giving rise to a hierarchical
structure (see Supplementary material). This observed hierarchy pro-
vides further evidence that the data has an inherent structure that
HYDRA effectively reveals.

Optimal clustering is visualized through the use of VBA (see Fig. 6B, C
and D). The commonly performed voxel-wise group difference analysis
between all healthy subjects and all patients (see Fig. 6A) provides the
necessary baseline for comparison. It should be noted that the statistical
significance of the group comparisons between the controls and the
subgroups of AD may be biased due to sample splitting. Thus, these
comparisons should serve a qualitative visualization function, rather
than a quantitative one. For this reason, we do not state the statistical
significance levels for these differences.

We observe that at the K=3 cluster level (see Fig. 6) the estimated
subgroups are associatedwith distinct patterns of structural brain alter-
ations: (i) diffuse atrophy subtype (see Fig. 6B) exhibiting a typical AD
pattern, similar to the one that is found by commonly applied monistic
VBA (see Fig. 6A). This subtype was characterized by atrophy in nearly
all cortical regions and increased lesion load in the periventricular
white matter; (ii) lateral parietal/temporal subtype (see Fig. 6C) in
which bilateral parietal lobe, bilateral temporal cortex, bilateral

http://adni.loni.usc.edu/data-samples/mri/
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dorsolateral frontal lobe, precuneus were mainly involved, and few
periventricularwhitematter lesionswere present; (iii)medial temporal
dominant subtype (see Fig. 6D) involving predominantly bilateral me-
dial temporal cortex.

The estimated subgroups were associated with distinct demograph-
ic, cognitive and cerebrospinalfluid (CSF) biomarker characteristics. The
first subgroup comprised 24% of AD subjects. It included relativelymore
male participants (21 males, 8 females) of relatively increased age
(78.9±5.75). Members of this group achieved a Mini Mental State Ex-
amination (MMSE6) score of 23.97±1.97, while the frequency of
APOE ε4 allele carrierswas 72.4%. In addition, this group had the highest
CSF Amyloid-beta 1 to 42 peptide (Aβ) concentration, 157.3 pg/mL, and
the lowest CSF total tau (t-tau) and CSF tau phosphorylated at threonine
181 (p-tau) concentrations, 97.3 pg/mL and31.2 pg/mL, respectively, on
average compared to the other subgroups.

The second subgroup was the largest one, consisting of 51% of AD
subjects, 60.32% of whom are APOE ε4 carriers. Both sexes were nearly
equally represented (31 males and 32 females), having a mean age of
73.7 years (±7.63 standard deviation). Its members performed rela-
tively worse in terms of MMSE (23.16±1.99). The average CSF p-tau
concentration for this groupwas the highest compared to the other sub-
groups at 44.9 pg/mL.

The last subgroup included the 25% of AD patients. Contrary to the
previous subgroup, it was dominated by females (9 males and 22 fe-
males) of relatively younger age (72.62±6.85) with a rather higher fre-
quency of APOE ε4 allele carriers (74.19%). MMSE performance of this
subgroup was 24.06±1.34. The CSF Aβ concentration was the lowest
for this group at 127.9 pg/mL while the CSF t-tau concentration was
the highest at 139.4 pg/mL, on average, compared to the other
subgroups.

Comparing the genetic profiles of these three subgroups of AD
yielded further insight on the differences between the pathologies ex-
hibited by each subgroup. One-way ANOVA was performed for each of
6 MMSE is a quantified clinical assessment for dementia (Folstein et al., 1975)
the single nucleotide polymorphisms (SNPs) identified in two recent
genome wide association studies that reported loci associated with AD
(Lambert et al., 2013) and cognitive decline (Sherva et al., 2014) (see
Appendix C). Three SNPs were statistically significantly different:
rs10948363, which is related to gene CD2AP; rs11023139, which is re-
lated to gene SPON1; and rs7245858, which is related to gene
LOC390956.

For SNP rs10948363, which is related to the gene CD2AP, 58% of the
first subgroup and 74% of the third subgroup were carriers of the minor
G allele, while 39% of the second subgroup were carriers of this risky
allele.

For SNP rs11023139, which is related to the gene SPON1, 29% of the
first subgroupwere carriers of theminor A allele, while 2% of the second
subgroup and 11% of the third subgroup were carriers of this allele.

Lastly, for SNP rs7245858, which is related to gene LOC39095, 23% of
the first subgroup were carriers of the minor A allele, while 2% of the
second subgroup and 4% of the third subgroups were carriers of this
allele.
Genetic heterogeneity of Alzheimer's disease

Genotype data
The second dataset comprises genotypes for 103 AD patients and

139 normal controls (see demographic information in Table 4), ob-
tained from the ADNI study.7 ADNI genotyping is performed using
the Human610-Quad Bead-Chip (Illumina, Inc., San Diego, CA),
which results in a set of 620,901 single nucleotide polymorphisms
(SNPs) and copy number variation markers (for details, see (Saykin
et al., 2010)).

Due to the weak or spurious signal in most of the genome, we opted
to only use SNP loci that were associated with Alzheimer's disease or
cognitive decline in recent large-scale genome-wide association studies
(Lambert et al., 2013; Sherva et al., 2014). This resulted in a reduced set
7 http://adni.loni.usc.edu/data-samples/genetic-data/.

http://adni.loni.usc.edu/data-samples/genetic-data/


Table 3
Table summarizing the classification and clusteringperformanceofHYDRA for the experiments
using structural MRI and genetic data, respectively. Results are reported for three values of the
parameter K. The optimal value of the parameter K that was estimated by performing model
selection based on clustering stability is denoted by *. The bold values indicate the maxima of
the correspondingmeasures for each dataset. The differences in AUCwere statistically insignif-
icant between K=1 and K=3 forMRI data (two-tailed t-test p-value equals to 0.115) and be-
tweenK=1andK=2for genetic data (two-tailed t-test p-value equals to 0.102). This suggests
that thediscriminative signalwaspreserved, allowing for clinically relevant clusters tobe found.

Experiment Classification/clustering performance

Data K AUC ARI

MRI 1 0.9149 ± 0.0563 –
2 0.9123 ± 0.0517 0.2054 ± 0.2477
3* 0.9021 ± 0.0572 0.2724 ± 0.1430

Genotype 1 0.7296 ± 0.1033 –
2* 0.7047 ± 0.1105 0.7986 ± 0.2266
3 0.6990 ± 0.1121 0.6412 ± 0.3124
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of 66 SNPs (see table in Appendix C) that were represented through the
use of two binary variables encoding the presence of major–major or
major–minor alleles, thus raising the total number of features to 132.
Fig. 6. Comparison between group differences obtained using commonly applied monistic ana
structural MRI data. The voxel-based analysis was performed using GM RAVENS. Color maps
(CN b pathological population), while warmer colors correspond to relative GM volume dec
Axial views of the VBA results obtained from GM group comparisons of (A) CN vs. AD; (B) CN
are shown. The first subgroup exhibited diffuse atrophy; the second subgroup was character
while the third subgroup exhibited bilateral medial temporal dominant atrophy.
Evaluation of results for genotype AD data
Classification results are reported in Fig. 7a. The standard linear SVM

discriminated fairly between healthy controls and AD patients (AUC for
K=1 equals 0.72). Compared to the result that was obtained using im-
aging features, this highlights the difficulties associated with disease
classification in the genotype domain. HYDRA was able to separate the
two groups with a similar accuracy for K=2 (AUC equals to 0.70). The
classification accuracy dropped for higher values of K. However, the dif-
ference between the results for K=1 and K=2 was statistically insig-
nificant (p=0.10).

The clustering stability results are presented in Fig. 7b, while
the AUC and ARI values for the HYDRA model at K=1 ,2 , 3 are
given in Table 3. The stability analysis suggested that two clusters
are appropriate for capturing the intrinsic dimensionality for
representing the genetic heterogeneity associated with AD. Similar
to the anatomically driven clustering results, these two clusters
are successively partitioned to smaller clusters for higher values
of K (see Supplementary material), showing a hierarchical organi-
zation. This suggests that the data has structure that HYDRA
reveals.
lysis and the results that were obtained using our method for heterogeneity detection in
indicate the scale for the t-statistic. Colder colors indicate relative GM volume increases
reases (CN N pathological population). Images are displayed in radiological convention.
vs. first AD subgroup; (C) CN vs. second AD subgroup; and (D) CN vs. third AD subgroup
ized by bilateral parietal lobe, precuneus and bilateral dorsolateral frontal lobe atrophy;
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The optimal genotype clustering is visualized by contrasting the im-
aging phenotypes of the estimated subgroups against the healthy con-
trol population through VBA (see Figs. 8A and B).

We observe that at the K=2 cluster level, the estimated subgroups
were associated with distinct patterns of structural brain alterations:
(i) increased temporal lobe atrophy subtype (see Fig. 8A) including pos-
teriormedial cortex atrophy and increasedwhitematter lesion load; (ii)
increased superior frontal lobe atrophy subtype (see Fig. 8B) including
temporal lobe atrophy and periventricular white matter lesions.

The first subgroup exhibited reduced GM volumes in the hippocam-
pus and entorhinal cortex (Fig. 8A), while the second subgroup exhibit-
ed reduced GM volumes in the superior frontal lobe (Fig. 8B). The
difference between the brain images in the two subgroups are visual-
ized in Fig. 8C.

The sex and age composition of the two estimated subgroups was
similar for both cases. The proportion of the females in the first sub-
group was 48.52%, while for the second, it was 45.71% (see also
Table 4). The average age of the first subgroup was 74.5 years, while it
was 76.2 years for the other subgroup.

In addition to anatomical differences, the two subgroups exhibited
significantly different levels of APOE ε4 allele and CSF biomarkers.
While the first subgroup was composed of 98% APOE ε4 carriers, only
14% of the second subgroup were APOE ε4 carriers. Also, the first
group had lower Aβ concentration, 133.6 pg/mL, and higher t-tau and
p-tau concentrations, 129.5 pg/mL and 42.5 pg/mL, respectively, on av-
erage compared to the second subgroup.

Further analysis of the genetic differences between the two sub-
groups yielded two additional loci of interest.While 32% of the first sub-
group were carriers of the risk-related A allele of the SNP rs6656401
(related to gene CR1) 49% of the second subgroupwas composed of car-
riers of this allele.

The second locus that differed between the two subgroups was the
SNP rs6733839, which is related to gene BIN1. While 72.06% of the
first subgroup consisted of risk-related C allele carriers of rs6733839,
85.71% of the second group comprised carriers of this allele.

However, similar to voxel-based analysis of the differences between
the subgroups of AD patients, these statistical findings should be
approached with care as there might be bias due to sample splitting.
The statistical power needed tomake a definite statement about the ge-
netic differences between the subtypes of AD may require a much
higher sample size.

Discussion and conclusion

Synopsis

In this paper, we presented HYDRA, a method for disentangling
heterogeneity in a principled semi-supervised machine learning frame-
work. HYDRA aims to generalize the basic assumption of computational
neuroimaging studies from a single separating pattern to many pat-
terns, thus addressing one of the major challenges that characterizes
many studies, namely the presence of heterogeneity. HYDRA attempts
to find patterns associated with the underlying disease process, or
more generallywith the difference between two groups. These different
patterns could potentially identify different dimensions of the underly-
ing disease process and hence lead to diagnostic subcategories.

The proposed approach seamlessly integrates clustering and dis-
crimination in a coherent framework by solving for a non-linear classi-
fier that bears common geometric properties with convex polytopes.
Discrimination is achieved by constraining one class in the interior of
the polytope, while at the same time maximizing the margin between
examples and class boundary. On the other hand, clustering is per-
formed by associating disease samples to different faces of the polytope,
and hence to different disease processes. Thus, each face of the polytope
informs us about the distinct foci of disease effects that distinguish the
patients from the healthy control subjects. This coupling between
clustering and classification allows for segregating patients based on
disease patterns rather than global anatomy.

In our experiments, we demonstrated the ability of the proposed ap-
proach to discern disease foci in both synthetic and clinical datasets
without undermining its predictive power. Moreover, our method is
endowed with improved generalization performance due to its maxi-
mum margin property of the method and the low complexity of the
model (compared to standard non-linear classifiers, e.g., Gaussian ker-
nel SVM). The latter allows it to efficiently handle small sample size
high dimensionality data that are commonly encountered in neuroim-
aging studies by exploiting thedualmodel representation and operating
in the inner product space.

Model selection

Choosing an appropriate number of hyperplanes, or corresponding
disease subtypes, is a important and difficult model selection question.
The difficulty is underlined by the fact that there is no ground truth
available against which one may test a clustering result. However, we
presented a strategy based on examining the clustering stability
(Ben-Hur et al., 2002; Lange et al., 2004). The basic premise behind
this strategy is that as one gets closer to the intrinsic dimensionality of
the pathological group, the clustering algorithm should obtain similar
results for different datasets generated by sampling the initial popula-
tion. The group structure should remain relatively stable accounting
for the fact that the datasets have been generated by the same factors.

Anatomical heterogeneity of AD

Applying the proposed framework to structural imaging data from
ADNI, resulted in the definition of three AD subgroups. Our results largely
agree with a recent study employing surface-based morphometry to
study AD heterogeneity based on cortical thickness (Noh et al., 2014)
and bear similarity to the subtypes that were recently identified in
a pathologic study based on the distribution and density of
neurofibrilllary tangles (Murray et al., 2011). The first subgroup is similar
to the diffuse atrophy subtype reported in (Noh et al., 2014) and the typ-
ical AD group in (Murray et al., 2011). The second subgroup is comparable
to the parietal dominant in (Noh et al., 2014) and the first subtype in
(Murray et al., 2011). The third subgroup maps to the medial temporal
subtype of (Noh et al., 2014) and the third group of (Murray et al., 2011).

The agreement of the results, despite the differences in the design of
the studies, emphasizes the fact that AD should be considered as a
neuroanatomically heterogeneous disease, characterized by multiple
pathological dimensions. Among the pathological dimensions revealed in
this study, only the first one (Fig. 6B) bore important resemblance with a
typical AD pattern involving signature AD regions, while the other two
(Figs. 6B and C) exhibited distinct pathological patterns. These dimensions
may reflect distinct pathways leading to AD, associated with distinct dis-
ease processes that may constitute potential therapeutic targets.

Aiming to further elucidate the recovered pathological dimension of
AD, we found that the anatomically defined clusters exhibit significant
differences in their genotypes, demographic characteristics and CSF bio-
marker distributions.

The first subgroup comprised more male participants of relatively
older age. A total of 72.4% of its members were APOE ε4 allele carriers,
while SNPs rs11023139 and rs7245858 were carried relatively more
by members of this subgroup than members of the other two; 29% of
the first subgroup were carriers of the minor A allele for rs11023139
and 23% of the first subgroup were carriers of the minor A allele for
rs7245858 (see Evaluation of results for structural MRI AD data). This
subgroupwas characterized by themostwidespread pattern of atrophy,
yet themost normal CSF biomarker levels. Moreover, the cognitive per-
formance of its members was comparable to the one of the rest of the
subgroups. The older age of the group, the relativelymore normal levels
of CSF biomarkers aswell as the protective nature of rs11023139, which



Table 4
Demographic and clinical characteristics of healthy controls, AD patients (left) and the estimated genetic-driven subtypes of AD (right). a, Denotes subjects with at least one APOE ε4 allele
present. b, Denotes the cerebrospinal fluid (CSF) concentrations of amyloid-beta 1 to 42 peptide (Aβ), total tau (t-tau), and tau phosphorylated at the threonine 181 (p-tau). c, p-value
estimated using two-tailed t-test to compare AD with CN. d, p-value estimated using analysis of variance (ANOVA) to compare the two estimated AD subgroups.

Genetic heterogeneity in Alzheimer's disease

AD vs. CN (n=243) AD subgroups (n=103)

CN (n=139) AD (n=103) p‐valuec Group 1 (n=68) Group 2 (n=35) p‐valued

Age (years) 76.19 ± 4.85 75.04 ± 7.59 0.15 74.46 ± 6.56 76.18 ± 9.27 0.27
Sex (female), n (%) 62 (44.60) 49 (47.57) 0.64 33 (48.52) 16 (45.71) 0.78
MMSE 29.16 ± 1.01 23.54 ± 1.95 1.85e-80 23.60 ± 1.88 23.42 ± 2.10 0.67
APOE4 genotypea, n (%) 36 (25.89) 72 (69.90) 9.56e-13 67 (98.52) 5(14.28) 8.96e-33
CSF Aβ (pg/mL) b 206.1 ± 54.61 147.2 ± 43.82 1.093e-09 133.6 ± 28.47 174.2 ± 56.04 0.0004245
CSF t-tau (pg/mL) b 71.11 ± 24.89 121.9 ± 59.62 6.456e-09 129.5 ± 57.31 107 ± 62.71 0.1738
CSF p-tau (pg/mL) b 25.02 ± 13.69 40.7 ± 19.86 1.026e-06 42.58 ± 19.92 36.95 ± 19.7 0.3051
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has been associatedwith a slower rate of cognitive decline (Sherva et al.,
2014), suggest a protracted disease progression. The possible long dis-
ease progression may have allowed for compensatory mechanisms to
develop resulting in a cognitive performance that is comparable to the
other groups despite the extended atrophy.

The second subgroup was the largest one (comprising 51% of AD
subjects), with nearly equal sex proportions. However, it comprised
proportionally fewer APOE ε4 carriers (60.32%), fewer carriers of the
risky allele of SNP rs10948363 (39%), and almost no carriers of the
minor A allele of SNP rs10948363 (2%) and SNP rs7245858 (2%). This
was the group whose members performed worse in terms of MMSE.

The third subgroup included predominantly females of relatively
younger age. Most of the patients (74.19%) were APOE ε4 allele carriers,
while 74% of them were also carriers of the minor G allele of the SNP
rs10948363, whose corresponding gene is CD2AP. CD2AP is a scaffolding
protein that is involved in cytoskeletal reorganization and intracellular
trafficking (Dustin et al., 1998) and has been previously associated with
late onset AD (Naj et al., 2011). Moreover, a direct link between CD2AP
and amyloid β toxic effects has been noted in yeast, nematodes and rat
cortical neurons after study of the role of several genes in amyloid β
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Fig. 7. Genetic data: (a) Cross-validated classification accuracy. (b) Cross-validated cluster
stability. Results are reported for different values of the parameter K. Error bars are
centered around the mean and indicate variance. Classification accuracy slightly
decreases. However, the results for K=1 and K=2 were not statistically significantly
different. Cluster stability exhibited a distinct, high peak at K=2, suggesting the
existence of two distinct disease subgroups.
and tau pathways (Treusch et al., 2011). This along with the fact that
this group exhibits the most abnormal levels of CSF t-tau and Aβ concen-
trationmay explain whymembers of this group are diagnosed as AD, de-
spite being of younger age and exhibiting more focal atrophy. The sex
difference in the population of this subgroup may result from the gender
difference in the AD-promoting effect of the APOE genotype (Payami
et al., 1996). Given that APOE ε4 preferably affects medial temporal lobe
structures, women may have a more vulnerable medial temporal cortex
than men, giving rise to this specific subtype.
Genetic heterogeneity of AD

Applying the proposed framework to genetic data fromADNI, result-
ed in the identification of two AD subgroups. These groups were essen-
tially dichotomized based on the presence of APOE ε4 allele (98% of the
members of the first subgroup carry it, while only 14% of the second
subgroup do). However, the two groups exhibit additional genetic dif-
ferences, as well as anatomical differences and distinct distributions of
CSF biomarkers.

Genetic differences were found for the SNP rs6656401 (related to
gene CR1) and the SNP rs6733839 (related to gene BIN1). Genetic vari-
ations at CR1 have been associated with the risk of cerebral amyloid
angiopathy and decreased entorhinal cortex volume (Biffi et al., 2012;
Bralten et al., 2011). Increased expression of the BIN1 gene has been re-
cently implicated with modulating tau pathology (Chapuis et al., 2013),
while BIN1 has also been associated with entorhinal and temporal pole
cortex thickness (Biffi et al., 2012).

Anatomical differences were mainly found in hippocampal and en-
torhinal cortex, where the first group was characterized by significantly
more atrophy. The anatomical differences between the subgroups may
be explained by the genetic variations. APOE ε4 has been related to in-
creased atrophy in hippocampus (Hashimoto et al., 2001; Honea et al.,
2009), entorhinal (Juottonen et al., 1998) and medial frontal cortex
(Fennema-Notestine et al., 2011). Given that, the first subgroup is ex-
pected to exhibit more atrophy in these areas.

The two groupswere characterized by differences in the distribution
of the CSF biomarkers. This difference was more significant for the CSF
Aβ, which was significantly reduced in the first group. This difference
may also be attributed to the effect of APOE ε4, which has been previ-
ously associated with reduced levels of CSF Aβ and t-tau (Prince et al.,
2004; Sunderland et al., 2004).

While the dominant presence of APOE ε4 in the first subgroup pro-
vides the means to interpret the anatomical and CSF biomarker differ-
ences between the two subgroups, the relatively higher expression of
the SNPs related to CR1 and BIN1 genes in the second subgroup (where
APOE ε4 allele is less expressed) may be an indication that these genes
may be part of an alternative pathway for AD pathogenesis in the absence
of APOE ε4 expression. The atrophy exhibited by the second subgroup in
the entorhinal cortex seen in Fig. 8B) may be a product of CR1 expression
since APOE ε4 is largely absent in this subgroup. While this hypothesis



Fig. 8. Comparison between group differences obtained using commonly appliedmonistic analysis and the results that were obtained using our method for heterogeneity detection in genetic
data. The voxel-based analysis was performed using GMRAVENS. Colormaps indicate the scale for the t-statistic. Images are displayed in radiological convention. Axial views of the VBA results
obtained from GM group comparisons of (A) CN vs. first AD subgroup; (B) CN vs. second AD subgroup; and (C) first AD subgroup vs. second AD subgroup are shown. For (A) and (B), colder
colors indicate relative GM volume increases (CN b AD subgroups), while warmer colors correspond to relative GM volume decreases (CN N AD subgroups). Similarly for (C), warmer colors
indicate relative GM volume increases (first AD subgroup b second AD subgroup), while colder colors correspond to relative GM volume decreases (first AD subgroup N second AD subgroup).
Both groups exhibit atrophy in the temporal lobe and posterior medial cortexwhile white matter lesions are present in the periventricular area. However, the first AD subgroup, whichmainly
comprises APOE ε4 carriers, is characterized by significantly more hippocampus and entorhinal cortex atrophy and less superior frontal lobe atrophy.
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remains to be validated, this underlines the value of data-driven, multi-
variate, exploratory techniques in forming new hypotheses.

Limitations and future work

There are some limitations to this work. First, the lack of ground
truth for the clinical datasets does not allow us to quantitatively validate
the proposed method. However, on the one hand, when AD patients
were clustered based on imaging information, the identified patterns
of abnormality aligned well with findings based on neuropathology re-
ported inMurray et al. (2011) and the subtypes defined based on corti-
cal thickness in Noh et al. (2014). Moreover, the anatomically defined
subgroups also exhibited genetic differences, which provides additional
evidence for the validity of the obtained clustering. On the other hand,
when clustering based on genetic information,we identified subpopula-
tions that exhibited meaningful anatomical differences. In summary,
our results were consistent with the existing picture of pathological
neurodegeneration and the function of the related SNPs.

Nevertheless, the sample size that is necessary for drawing reliable
conclusions about the full extent of heterogeneity of AD may be higher
than what was analyzed. In general, we were able to demonstrate the
presence of heterogeneity in AD given the ADNI dataset. However, to
be able to elucidate disease heterogeneity and map the distinct patho-
logical processes that drive it, a wider sampling of the patient popula-
tion probed in a multi-parametric fashion may be required.

Another limitation of this work is that the diseased population was
studied by using either structural imaging data or genetic information.
While this demonstrates the ability of the proposed framework to
handle both imaging and non-imaging data, including additional infor-
mation (e.g., amyloid PET imaging, tau imaging, cerebrospinal fluid bio-
markers) would be beneficial in better characterizing the dimensions
and extent of heterogeneity. Nonetheless, HYDRA cannot currently han-
dle multiple sources of information. This could be made possible by ex-
tending HYDRA through the adoption of multiple kernel techniques
(Bach et al., 2004). Different kernels could be employed to encode differ-
ent sources of information, allowing for their seamless integration. This
extension could make HYDRA even more general, allowing its applica-
tion to other exploratory problems, such as characterization of the
breast cancer heterogeneity and the analysis of abnormal tissue sub-
types, without being limited to the clustering of brain images.

We should note that the estimation of the subpopulations may be in-
fluenced by confounding variations due to age and sex differences. In its
current form, our method does not explicitly take into account this case.
Instead,we circumvent this by performing univariate covariate correction
prior to feeding the data to our method. In order to tackle this shortcom-
ing, we are currently working on extending the proposed method by ex-
plicitly modelling the effect of covariates within a unified clustering
framework. However, the effect of the covariates also renders prohibitive
the usage of the classificationmodel to interpret theweight vectors of the
hyperplanes (as explained in Haufe et al. (2014)). We circumvent this by
performing voxel-wise group analysis between the inferred patient clus-
ters. However, the interpretation of the group comparison results should
bemadewith care since the significance of the comparisonmay be biased
due to the sample splitting. The voxel-based comparisons should serve
only as a qualitative tool and not as a quantitative one. Furthermore, to
avoid the circularity of assessing group differences using the same



8 http://www.csie.ntu.edu.tw/cjlin/libsvmtools/weights/.
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features that the groups are clustered by, we have assessed group differ-
ences using features that have not been used in the clustering. Namely,
we have assessed the genetic and demographic differences between the
anatomic subtypes of AD and the anatomic and demographic differences
between the genetic subtypes of AD.

A possible extension of our method is towards handling regression
and longitudinal studies. This could allow us to elucidate the complex
nature of spatiotemporal disease dynamics as well as to reveal varying
paths of normal progression. Lastly, it is straightforward to derive a
one-class version of HYDRA, analogous to the work of Sato et al.
(2009), to detect and subtype outliers among controls. This could po-
tentially shed light on the heterogenous nature of healthy phenotypes.

Conclusion

HYDRA aims to separate two groups by deriving a non-linear
classification boundary that is constructed by usingmultiple linear hyper-
planes. The constructed polytope allows for the revealing heterogeneity
by assigning subgroups of patients to different hyperplanes. HYDRA is
general; it can handle imaging and non-imaging data and can find appli-
cations in exploratory analyses other than clustering of brain images. We
evaluated the performance of themethod in simulated data, providing in-
sight into its workings. Furthermore, we applied HYDRA to structural im-
aging and genetic dataset from ADNI, revealing disease subtypes that are
consistent with the existing picture of pathological neurodegeneration
and the function of the related SNPs. These results demonstrate the po-
tential of our approach in teasing out heterogeneity.
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Appendix A. Optimization

Similar to other clustering methods, the HYDRA algorithm requires
an initialization step followed by iterations of assignment and convex
polytope solutions. To make the clustering robust, we further find the
consensus of the clustering results obtained in multiple runs of
HYDRA. Here, we detail the techniques used for each of these steps. Ini-
tialization is found in Appendix A.1, assignment step is found in
Appendix A.2, convex polytope solution is in Appendix A.3 and consen-
sus is found in Appendix A.4.

As mentioned in themain text, HYDRA is geometrically asymmetric,
requiring one of the groups to lie inside the polytope. We provide the
solution for the symmetric version of HYDRA in the Symmetric
HYDRA algorithm section.

Lastly, HYDRA can be solved in the dual domain if sample size is rel-
atively lower than the dimensionality. The dual solution is in Appendix
B.1.

A.1. Initialization

Due to the non-convex nature of the maximum margin polytope
problem, the initialization is crucial in directing the iterative algorithm to-
wards favorable solutions. Since we are interested in elucidating discrim-
inative patterns between controls and patients, simply initializing by
clustering the patients may not be sufficient. This is because standard
clustering may group patients by following global patterns, such as the
brain volume, or even more subtle patterns that nonetheless reflect nor-
mal inter-individual variability and not variability in the disease process.
On the contrary, patients should be assigned to initial clusters by consid-
ering their difference map with respect to controls. In other words, since
we aim to explore different directions of deviation from normal anatomy
without concern for magnitude of that deviation, we initially group pa-
tients into clusters based on the regions inwhich they differ from the con-
trols and not the magnitude of their difference. To achieve this, we
initialize the assignments of patients into clusters by sampling K unit
length hyperplanes obtained by considering the space of all pairwise dif-
ferences between patients and controls.We chooseK unique hyperplanes
by applying determinental point processes (DPP) (Kulesza and Taskar,
2012). DPP is a sampling technique that aims to obtain samples that are
as diverse as possible. This type of sampling ensures that the differences
we sample reflect unique biomarkers instead of repeated biomarkers
with varying magnitudes. This is crucial in preventing clustering patients
into groups that are not related to variability in the disease process. The
steps of the initialization algorithm are given in Algorithm 2.

Algorithm 2. Initialization, determinental point processes

Input: X a Rn×d, y a {−1,+1}n (training signals), K (number of
clusters), m (number of hyperplanes samples to draw)

Output: S−0 a [0,1]n
−×K (initial clustering assignment)
• Randomly draw m pairs of negative (x−) and positive (x+)
samples (with replacement): {xi−,xi+}i=1

m

• Obtain m hyperplanes by taking the difference between
members of the same pair: ui=(xi+−xi−)/Oxi+−xi−O2

• Sample K hyperplanes {wj
0}j=1

K from {ui}i=1
m by

determinental point processes (Kulesza and Taskar, 2012)
• Set rows of S− such that si ,argminjwj

0Txi
=1, otherwise set

si,j=0
A.2. Assignment step solution

For {W,b} fixed, the problem of estimating S− is an assignment
problem that can be cast as a linear program (LP). The LP problem has
infinite solutions when the loss function max{0,1+wj

Txi+bj} is equal
to 0 for multiple classifiers j and for the same sample i. In this case, we
choose the solution that is proportional to the margin:

si; j ¼
0 if max 0;1þwT

j xi þ bj

n o
N0

1þwT
j xi þ bjX

j
1þwT

j xi þ bj


 �
1 max 0;1þwT

j xi þ bj

n o
≤0


 � otherwise

8>>><
>>>:

ðA:1Þ

where 1(·) is the indicator function. Let us note here that the obtained
clustering is inherently different from the result that is obtainedby stan-
dard clustering techniques. Instead of grouping together samples based
on the similarity of their appearance, we aggregate here samples that
are best separated by the same classifier. Thus, the inferred clustering
is driven by discrimination. The more pronounced the pathology is,
the easier it is to disentangle the underlying heterogeneity in the imag-
ing profiles.

A.3. Convex polytope solution

For S− fixed, the solution to {W,b} can be obtained using K calls to a
modified version of LIBSVM (Chang and Lin, 2011)8 that allows for

http://www.csie.ntu.edu.tw/cjlin/libsvmtools/weights/


361E. Varol et al. / NeuroImage 145 (2017) 346–364
adaptive sample weightings. The adaptive weight ci ,j of sample i for the
classifier j is calculated as

ci; j ¼
Csi; j if yi ¼ −1
C
K

if yi ¼ þ1

0
@ ðA:2Þ

In case the dataset is highly unbalanced (i.e., one of the classes is
over-represented) samples in each class can be further weighted by
their inverse relative proportion within the training set.

A.4. Consensus solution

While DPP initialization serves as the first step in avoiding poor lo-
cally optimal solutions, consensus clustering serves as the second
layer to eliminate unstable clusterings that may arise due to the non-
convexity of the objective function. In noisy, or high dimensional data,
the clustering obtained via Algorithm 1 may depend greatly on the ini-
tialization. To decrease this dependency and obtain stable clustering re-
sults that characterize the disease heterogeneity, we opt for a multi-
initialization strategy, endowed by a fusion step. First, multiple runs of
Algorithm 1 result in a number of clustering hypotheses. Then, we aim
to fuse the respective hypotheses by harnessing the wisdom of the
crowd to obtain an aggregate clustering. Consensus is achieved by
grouping together samples that co-occur (i.e., they are assigned to the
same clustering) across different clustering hypotheses. In practice, we
first compute a co-occurrencematrix of the subjects based on each clus-
tering result and then perform spectral clustering using it.

A.4.1. Co-occurrence matrix
Given P clusterings {S−p}p=1

P obtained by running Algorithm 1 P
times, the co-occurence matrix A is given by

Ai;l ¼
XP

p¼1

XK

j¼1
spi; js

p
l; j i; l ¼ 1…n; i≠l

Ai;i ¼ 0 i ¼ 1…n
ðA:3Þ

In other words, each il-th entry of the matrix enumerates the num-
ber of cases that the i-th and l-th sample were assigned to the same
cluster.

A.4.2. Spectral clustering
The consensus clustering involves the calculation of the Laplacian

matrix from the co-occurrence matrix A and the computation of the K
eigenvectors ([v1…vk]) that correspond to the K smallest eigenvalues
(λ1≤… ≤λK). Then, the aggregate clustering of subjects is obtained by
running K-means in the obtained subspace. The implementation of con-
sensus clustering is outlined in Algorithm 3. It should be noted that the
consensus clustering presented herein is analogous to spectral cluster-
ing (Ng et al., 2002).

Algorithm 3. Consensus clustering

Input: {S−p a [0,1]n
−×K}p=1

P (P clusterings from Algorithm 1), K
(number of clusters)

Output: S− a [0,1]n
−×K (final clustering assignment)
• Compute co-occurrence matrix A using Eq. (A.3)
• Spectral clustering on A:

• Compute Laplacian matrix L ¼ diagð∑n−

l¼1Ai;lÞ−A
• Compute the K eigenvectors (v1,… ,vK) that correspond

to K smallest eigenvalues of L (λ1≤…≤λK)
• S−pK−means([v1…vK])
Appendix B. Dual optimization

Due to the high dimensional, low sample size nature of neuroimag-
ing data, it would be useful to operate in the dual domain to ease the
computational burden. The dual formulation of HYDRA can be obtained
by converting Eq. (1) to:

maximize
αi; jf gi¼1;…;n

j¼1;…;K

XK
j¼1

Xn
i¼1

αi; j−
1
2

XK
j¼1

Xn
i¼1

Xn
l¼1

αi; jαl; jyiylx
T
i xl

subject to

Xn
i¼1

αi; jyi ¼ 0 j ¼ 1;…;K

C=K ≥αi; j ≥0 if yi ¼ −1 j ¼ 1;…;K
Csi; j ≥αi; j≥0 if yi ¼ þ1 j ¼ 1;…;K

The advantages of this formulation are two-fold. First, it allows us
to solve for only n×K variables {αi , j}j=1, … ,K

i=1, … ,n instead of K×d vari-
ables, which may be prohibitively large. Second, via the kernel
trick, we may substitute xiTxj with any kernel satisfying the Mercer
condition. In terms of implementation, this formulation is readily
adaptable to the weighted LIBSVM (Chang and Lin, 2011) implemen-
tation. Similar to the case of the primal problem, the weights are
given by Eq. (A.2).

This formulation does not affect the assignment step solution since
the assignment step requires only the prediction score for each subject
corresponding to the K hyperplanes. Since the hyperplanes are defined
asw j ¼ ∑n

i¼1yiαi; jxi, the prediction score for each hyperplanewj can be
simply calculated as

wT
j xl ¼

Xn
i¼1

yiαi; jxT
i xl

which can be readily obtained from the Gram matrix that stores the
inner products between data points. Furthermore, the bias terms bj
can be solved in the dual by

bj ¼ yl−
Xn
i¼1

αi; jyix
T
i xl

using any labeled sample (xl,yl) such that CNαi , lN0. The solutions for
{αi , j,bj} can be directly used in Eq. (A.1) to solve for the assignments
S−. In addition, the prediction for the dual version of HYDRA is

y� ¼ sign min
j

Xn
i¼1

yiαi; jxT
i x

� þ bj

 !

B.1. Dual symmetric prediction

In the case of the symmetric version of the algorithm, the final pre-
diction can be obtained as

y� ¼ sign min
j

Xn
i¼1

yiα
þ
i; jx

T
i x

� þ bþj

 !"

− min
j

Xn
i¼1

yiα
−
i; jx

T
i x

� þ b−j

 !#

Appendix C. List of genetics features used

The SNPs used as features is given in Table C.5. Two features were
extracted from each subject for each SNP: the presence of the major-



Table C.5
Genetic features used in HYDRA to classify AD from controls and discover subtypes of AD. Abbreviations: a, SNP, single nucleotide polymorphism bChr., Chromosome, cPosition, indicates
base pair location in release 19, build 135 of the humangenome in the dbSNPdatabase, dGene, Genes located±100 kbof the top SNP, eMAF,minor allele frequency. fPosition, indicates base
pair location in release 19, build 37 of the human genome in the dbSNP database.

Genetic features used for control vs. AD classification/clustering using HYDRA

SNPs associated with cognitive decline identified in (Sherva et al., 2014).

aSNP bChr. cPosition dGene eMAF aSNP bChr. cPosition dGene eMAF

rs2421847 1 171,557,600 PRRC2C 0.04 rs4836694 9 132,939,792 NCS1 0.11
rs12091371 1 240,605,052 FMN2 0.07 rs118048115 10 122,279,476 PPAPDC1A 0.04
rs6738962 2 80,281,173 CTNNA2 0.04 rs11023139 11 14,224,346 SPON1 0.05
rs78022502 2 128,396,167 LIMS2 0.06 rs61883963 11 14,338,703 RRAS2 0.06
rs538867 3 39,513,278 MOBP 0.03 rs34162548 11 14,556,220 PSMA1 0.05
rs9857727 3 51,095,028 DOCK3 0.1 rs326946 11 110,499,253 ARHGAP20 0.17
rs2668205 3 165,493,136 BCHE 0.03 rs147845115 12 51,878,760 SLC4A8 0.03
rs78647349 4 5,237,153 STK32B 0.04 rs61144803 12 94,235,165 CRADD 0.04
rs340635 4 87,931,404 AFF1 0.03 rs1399439 12 101,221,239 ANO4 0.04
rs113689198 5 109,111,327 MAN2A1 0.03 rs143258881 13 93,945,858 GPC6 0.03
rs112724034 5 109,221,026 PGAM5P1 0.03 rs17393344 13 109,473,946 MYO16 0.06
rs77636885 5 110,719,187 CAMK4 0.03 rs115102486 14 95,764,564 CLMN 0.03
rs116348108 5 118,435,127 DMXL1 0.04 rs74006954 15 27,712,644 GABRG3 0.03
rs143954261 5 126,729,450 MEGF10 0.04 rs17301739 15 58,730,639 LIPC 0.07
rs146579248 5 127,382,302 FLJ33630 0.04 rs8045064 16 24,675,589 FLJ45256 0.05
rs148763909 5 153,837,106 SAP30L 0.03 rs9934540 16 77,876,763 VAT1L 0.03
rs117780815 6 124,326,227 NKAIN2 0.03 rs62076103 17 45,888,374 OSBPL7 0.07
rs9494429 6 136,288,895 PDE7B 0.03 rs62076130 17 45,905,622 MRPL10 0.06
rs75253868 6 151,102,830 PLEKHG1 0.04 rs4794202 17 45,930,539 SP6 0.08
rs58370486 7 16,707,861 BZW2 0.03 rs117964204 17 48,692,082 CACNA1G 0.04
rs73071801 7 16,811,139 TSPAN13 0.04 rs72832584 17 59,292,436 BCAS3 0.05
rs1861525 7 25,161,602 CYCS 0.03 rs7245858 19 51,430,596 LOC390956 0.04
rs17172199 7 43,377,276 HECW1 0.08 rs34972666 20 2,384,972 TGM6 0.11
rs73660619 8 3,088,173 CSMD1 0.06 rs75617873 22 44,526,105 PARVB 0.03

SNPs associated with AD identified in (Lambert et al., 2013)

aSNP bChr. fPosition dGene MAF aSNP bChr. fPosition dGene eMAF

rs6656401 1 207,692,049 CR1 0.197 rs11218343 11 121,435,587 SORL1 0.039
rs35349669 2 234,068,476 INPP5D 0.488 rs983392 11 59,923,508 MS4A6A 0.403
rs6733839 2 127,892,810 BIN1 0.409 rs10498633 14 92,926,952 SLC24A4-RIN3 0.217
rs10948363 6 47,487,762 CD2AP 0.266 rs17125944 14 53,400,629 FERMT2 0.092
rs11771145 7 143,110,762 EPHA1 0.338 rs3865444 19 51,727,962 CD33 0.307
rs28834970 8 27,195,121 PTK2B 0.366 rs4147929 19 1,063,443 ABCA7 0.19
rs9331896 8 27,467,686 CLU 0.379 rs429358 19 44,908,684 APOE 0.1492
rs10792832 11 85,867,875 PICALM 0.358 rs7412 19 44,908,822 APOE 0.07392
rs10838725 11 47,557,871 CELF1 0.316 rs7274581 20 55,018,260 CASS4 0.083
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major and the major-minor alleles. Minor allele frequency (MAF) col-
umn in Table C.5 denotes the likelihood of observing the rare minor al-
lele in the population!

Appendix D. Supplementary material

Supplementary material to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2016.02.041.
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