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Abstract

This paper presents a novel image similarity measure, referred to as quantitative–qualitative measure of mutual information (Q-MI), for
multimodality image registration. Conventional information measures, e.g., Shannon’s entropy and mutual information (MI), reflect quantitative
aspects of information because they only consider probabilities of events. In fact, each event has its own utility to the fulfillment of the
underlying goal, which can be independent of its probability of occurrence. Thus, it is important to consider both quantitative (i.e., probability)
and qualitative (i.e., utility) measures of information in order to fully capture the characteristics of events. Accordingly, in multimodality image
registration, Q-MI should be used to integrate the information obtained from both the image intensity distributions and the utilities of voxels
in the images. Different voxels can have different utilities, for example, in brain images, two voxels can have the same intensity value, but
their utilities can be different, e.g., a white matter (WM) voxel near the cortex can have higher utility than a WM voxel inside a large uniform
WM region. In Q-MI, the utility of each voxel in an image can be determined according to the regional saliency value calculated from the
scale-space map of this image. Since the voxels with higher utility values (or saliency values) contribute more in measuring Q-MI of the two
images, the Q-MI-based registration method is much more robust, compared to conventional MI-based registration methods. Also, the Q-MI-
based registration method can provide a smoother registration function with a relatively larger capture range. In this paper, the proposed Q-MI
has been validated and applied to the rigid registrations of clinical brain images, such as MR, CT and PET images.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Registration of multimodality images of the same subject
provides a way of fusing different types of information, and
it is very important for medical diagnosis and computer-aided
surgery [1–14]. For example, by registering MR T1, T2, PD,
and FLAIR brain images of the same subject, the white matter
lesions (WMLs) in the brain can be identified [1]; by register-
ing the pre- and intra-operative images, computer-aided surgery
can be well performed [2]. Mutual information (MI) that
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measures the statistical dependency between two images has
been successfully applied to multimodality image registra-
tion [6–9]. Although numerous promising results have been
reported, it is worth noting that the MI-based registration
methods might have the limited performances, once the initial
misalignment of the two images is large or equally the overlay
region of the two images is small [10].

Various methods have been proposed to improve the robust-
ness of MI-based registration, and they can be classified into
three categories [10]. In the first category, instead of Shannon’s
entropy, alternative entropies such as Jumarie entropy [12,13]
and Rényi entropy [14] have been used. In the second category,
normalized MI measures [15,16], which is less sensitive to
the changes in the overlap of two images, has been proposed
and applied successfully in lots of studies [17–19]. In the third
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category, spatial information has been integrated into the MI-
based registration [20–25]. For example, both MI and match-
ing of gradient maps between two images have been used for
image registration in Ref. [20]; also, the MI of image fea-
tures, i.e., gradient, wavelet and other features, is employed for
registration [22–25]. Generally, the use of spatial information
increases the robustness of registration algorithms.

However, almost all MI-based registration methods treat the
voxels of the images equally, when calculating their MI. In fact,
different voxels, even having the same intensity [26], should
be treated differently since they have different characteristics
and utilities on image registration. Salient voxels should have
higher utility values, and hence contribute more to determine
the transformation between two images. For example, when
measuring the MI of two brain images, the white matter (WM)
voxels near the cortex should contribute more than the WM
voxels inside the large WM regions since it is more effective
to match WM voxels near the cortex than the inside regions.

To incorporate utility information into image registration pro-
cedures, we propose a novel image similarity measure, referred
to as quantitative–qualitative measure of MI (Q-MI). Q-MI con-
siders not only the probability of image intensity, but also the
utility of each voxel, when calculating MI of two images. This
is significantly different from the conventional MI measure that
only considers the quantitative aspect of information based on
the image intensity distribution. It is worth noting that the util-
ity of each voxel in an image can be determined according to
the regional saliency value calculated from the scale-space map
of this image [27,28]. Therefore, the salient voxels will have
higher utility values, and they will contribute more in measur-
ing the MI of the two images under registration. That is, the
voxels with high utilities play major roles in determining the
transformation between the images.

Importantly, the utility values of voxels are not fixed, and
they will be hierarchically updated during the registration pro-
cedure, with all voxels contributing equally in the final stage.
In particular, the initial utility of each voxel will be assigned
according to its saliency value [27,28]; with the progress of
image registration, this utility will gradually move towards one.
Thus, by mainly focusing on the voxels (or the regions) with
higher utilities in the initial registration procedure, the robust-
ness of registration can be improved. Also, by changing each
joint utility to one in the final stage, the sub-voxel accuracy of
registration can be retained as that obtained by the conventional
MI-based registration methods, because of using MI in the
final registration procedure. This hierarchical framework makes
the Q-MI-based image registration not only robust but also
accurate as demonstrated in the experiments.

The proposed Q-MI has been applied to the rigid regis-
tration of clinical brain images, such as MR, CT and PET
images, obtained from the Retrospective Registration Evalu-
ation Project (RREP) [29]. Experimental results show that,
compared to conventional MI-based registration methods, the
Q-MI-based registration method can provide a smoother regis-
tration function with a relatively larger capture range. It is also
much more robust and has much higher success rates for the
image registration.

The remainder of this paper is organized as follows. The
definition of Q-MI is first provided in Section 2, and then the
Q-MI-based registration method is described in Section 3. The
performance of this Q-MI-based registration method is demon-
strated in Section 4. This paper concludes in Section 5.

2. Quantitative–qualitative measure of MI (Q-MI)

In this section, the basic concepts of information and
MI are first briefly introduced (Section 2.1). Then, the
quantitative–qualitative measure of information (Section 2.2)
and MI (Section 2.3) is presented.

2.1. Measure of information and MI

The information measure of an event is defined as a value
related to the uncertainty or probability of occurrence of that
event [30]. The self-information of an even En with probability
pn can be defined as

H(En) = − log pn. (1)

For a set of events E = {E1, . . . , En, . . . , EN } with respective
probabilities P = {p1, . . . , pn, . . . , pN }, the average informa-
tion contained in E can be calculated by Shannon’s entropy
[31],

H(E) = H(E1, . . . , En, . . . , EN) =
N∑

n=1

pn(− log pn). (2)

In image processing, each intensity can be considered as an
event, and a whole image can be considered as a set of such
events; therefore, Shannon’s entropy of an image reflects the
complexity of intensity distribution in this image.

Since, in practice, we may not be able to obtain the
true probabilities of occurrence of N events in E, i.e., P =
{p1, . . . , pn, . . . , pN }, but their estimates Q={q1, . . . , qn, . . . ,

qN }, the relative entropy, called Kullback–Leibler distance
[30], can be used to measure how close Q approaches P,

D(E) =
N∑

n=1

pn

(
log

pn

qn

)
. (3)

MI is used to measure the amount of information one set of
events contains about another set of events. Given two sets of
events, E = {E1, . . . , En, . . . , EN } with a probability distribu-
tion P ={p1, . . . , pn, . . . , pN }, and F ={F1, . . . , Fm, . . . , FM}
with a probability distribution Q={q1, . . . , qm, . . . , qM}, their
MI is defined as the relative entropy between the joint distri-
bution and the product of marginal distributions as follows:

MI(E, F ) =
N∑

n=1

M∑
m=1

p(En, Fm) log
p(En, Fm)

pnqm

. (4)

When events in E is independent of events in F, p(En, Fm) =
pnqm, and MI(E, F ) = 0.

MI can be applied to multimodality image registration, since
it measures the amount of information that the two different
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modality images of the same subject contain each other. Thus,
by maximizing MI, a transformation can be obtained to align
one image onto another.

2.2. Quantitative–qualitative measure of information

The above traditional information measures only define the
quantitative aspect of information based on the probabilities of
events. In fact, the occurrence of events often causes different
influences and effects. Thus, besides the quantitative measures,
the qualitative aspect of information should also be considered
in order to fully justify the information of events, especially
when we need to consider the effects of their occurrence.

In [32], Belis and Guiasu presented a quantitative–qualitative
measure of information in cybernetic systems, which consists
of two aspects of an event, i.e., the quantitative one related to
its probability of occurrence, and the qualitative one related
to its utility for the fulfillment of the goal. In particular, the
quantitative–qualitative information supplied by event En with
a probability pn and a utility un is defined as

QH(En; un) = un(− log pn). (5)

The utility un is a subjective notion directly connected to the
goal to achieve. Generally, it can be set as any non-negative
real number, and a larger value means the event is more useful.
If the utility in Eq. (5) is set to one, Eq. (5) becomes Eq. (1).

Let U = {u1, . . . , un, . . . , uN } be the utilities of the events
in E, the quantitative–qualitative measure of information of E
can be defined as follows:

QH(E; U) =
N∑

n=1

unpn(− log pn). (6)

When the utilities of all events are equal to one, Eq. (6) becomes
Eq. (2). In practice, since the utilities of different events are
different, QH(E; U) does not achieve its maximum when all
the events have uniform probabilities.

Based on the work of Belis and Guiasu [32], Taneja [33]
presented a quantitative–qualitative measure of relative infor-
mation as

QD(E; U) =
N∑

n=1

unpn log
pn

qn

. (7)

Notice that un log(pn/qn)=un log pn−un log qn=−un log qn−
(−un log pn), and −un log pn is referred to as the useful
self-information conveyed by an event with probability pn and
utility un; thus term un log(pn/qn) can be regarded as the use-
ful information gain. When the utilities in Eq. (7) equal one,
Eq. (7) becomes Eq. (3).

2.3. Quantitative–qualitative measure of MI

As mentioned in Section 2.2, Shannon’s entropy-based MI
is based on the probabilities of occurrence of events, and does
not consider the particular qualitative aspects of events with
respect to the goal, i.e., the utility of each event. In order to

incorporate this qualitative aspect of event into the measure of
MI, we define a quantitative–qualitative measure of MI (Q-MI)
as follows:

QMI(E, F ; U)

=
N∑

n=1

M∑
m=1

u(En, Fm)p(En, Fm) log
p(En, Fm)

pnqm

, (8)

where u(En, Fm) represents the joint utility of events En and
Fm. Like the definitions given in Eqs. (6) and (7), Q-MI focuses
on the useful information that one set of events tells about
another set of events. When all the joint utilities are set to
one, Eq. (8) becomes the conventional MI. When the events in
E are independent of the events in F, Q-MI is equal to zero,
i.e., QMI(E, F ; U)= 0. Moreover, when u(En, Fm)= 0 for all
combinations of n and m, Q-MI is equal to zero. This means
that the set of events E tells nothing useful about the set of
events F.

It is worth noting that, although the utility of an event un in
Eqs. (5)–(8) can be set between 0 and 1, the sum of utilities of all
events, i.e.,

∑N
i=1 un, is not necessarily to be 1. This is because

the concept of utility is different from the concept of weight.
The utility of an event just indicates the amount of contribution
that this event provides for a given goal, whereas the weight is
generally used to balance different terms. Moreover, increasing
the utility of one event will not necessarily decrease the utilities
of other events. Thus, Q-MI can not be simply considered as
weighted MI.

3. Q-MI-based multimodality image registration

In this section, we will first describe the Q-MI-based regis-
tration algorithm by employing Q-MI as a similarity measure.
Then, the method of computing the utility for each voxel in an
image will be introduced (Section 3.2). Afterwards, the method
of estimating the joint utility of two images will be presented,
which will be used for the calculation of Q-MI (Section 3.3).
Finally, the optimization method used in this registration algo-
rithm will be briefly described (Section 3.4).

3.1. General description

As mentioned in Section 2.3, Q-MI gives the amount of use-
ful information that one image contains in another image. Thus,
maximizing the Q-MI of the two images under registration
ensures the alignment of the two images mainly based on the
voxels with useful information. The assignment of utility for
each voxel in the images depends on the applications at hand,
which will be discussed in Section 3.2.

The Q-MI-based registration algorithm can be formulated as
follows. By denoting the two images under registration as the
reference image R and the floating image F, and letting IR and
IF be the intensity values of the two images, respectively, the
goal of registration is to find out a transformation T so that
the transformed floating image FT can be well aligned with
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the reference image R. The Q-MI between the reference image
R and the transformed floating image FT under the current
transformation T can be derived from Eq. (8) as follows:

QMI(R, FT ; U)

=
∑ ∑

u(IR, IFT
)p(IR, IFT

) log
p(IR, IFT

)

p(IR)p(IFT
)
, (9)

and the optimal transformation T ∗ between images R and F
can be obtained by maximizing the Q-MI, i.e.,

T ∗ = arg max
T

QMI(R, FT ; U). (10)

In Eq. (9), the marginal and the joint image intensity distri-
butions, i.e., p(IR), p(IFT

) and p(IR, IFT
), can be estimated

by simply calculating the marginal and the joint histograms of
images within the overlap region. u(IR, IFT

) is a joint utility
for each intensity pair (IR, IFT

), which will be determined by
the utilities of both images in Section 3.3. Notice that, instead
of fixing the joint utilities in the whole registration procedure,
they are hierarchically updated at different registration stages,
as described next.

In particular, each joint utility u(IR, IFT
) is changed from

its initial value to one in the whole registration procedure. That
means, initially the voxels with higher utility values contribute
more on the alignment of two images; with the progress of reg-
istration, the utilities of voxels gradually change towards one,
thus all voxels finally contribute equally for the image registra-
tion. Accordingly, this Q-MI-based registration algorithm not
only improves the robustness of registration, but also retains the
sub-voxel accuracy of registration as the conventional MI-based
registration methods did, because of employing MI measure
in the final registration stage. Specially, u(IR, IFT

) gradually
changes with the registration stage t according to the function
u0(IR, IFT

)+�(t) ·(1−u0(IR, IFT
)), where �(t) is a parameter

increasing from 0 to 1 with the increase of t during the registra-
tion procedure, and u0(IR, IFT

) is the initial joint utility which
will be determined by Eq. (13) in the next. Thus, �(t) controls
the changes of u(IR, IFT

) from its initial value u0(IR, IFT
) to

1. As proved in our experiments, this Q-MI-based registration
algorithm can converge, since it finally becomes MI-based reg-
istration method.

3.2. Utility of each voxel

Each voxel in the image is unique, and it has its own roles.
One important difference between those roles is the amount
of significance. For example, the voxels that lie in the region
of interest or at the boundary of region of interest are more
significant for image analysis and understanding task, compared
to the voxels that lie in the background. Although many methods
have been proposed to characterize important features of image
voxels, how to characterize the properties of each voxel still
remains a hot topic in computer vision and pattern recognition
fields.

Many techniques have been developed to define the saliency
of a voxel, i.e., using edges [34,35], corners [36] and key points

[37–39]. Gradient operator is one simple image detector, and
it is able to identify the location of intensity changes. As we
indicated in the Introduction, gradient map has been widely
incorporated into the MI-based registration methods. However,
gradient is a local feature, and it is sensitive to noise. On the
other hand, saliency measure [27], defined from scale-space
map for each voxel in the image, is robust to noise and it con-
siders regional information. Accordingly, the saliency defini-
tion is adopted here for representing the saliency of each voxel,
and also the utility of this voxel in image registration.

Saliency measure [27] can be defined for each voxel in
an image, based on local image complexity such as entropy.
Basically, a point can have low image complexity if only a small
region around this point is evaluated; however, it will have high
image complexity when a large region is evaluated. Therefore,
it is important to find the best scale such that entropy is max-
imized. On the other hand, local image exhibits self-similarity
over a large range of scales. Therefore, self-dissimilarity mea-
sure should also be considered into the definition of saliency
as in Ref. [27].

The best scale for a point can be determined by analyzing
entropy in its local regions of different size. For each voxel
x, we first calculate the probability distribution of intensity i,
pi(s,x), in a spherical region of radius s centered at x. Then,
we calculate the local entropy L(s,x) from pi(s,x), as defined
below:

L(s, x) = −
∑

i

pi(s, x) log pi(s, x). (11)

The best scale sx for the region centered at voxel x is selected
as the one that maximizes the local entropy L(s, x). Fig. 1
shows an example of finding the best scale for a given location.
In Fig. 1(a), a green point denotes the point under consider-
ation, while the red circles denote the different sized regions.
Fig. 1(b) shows the change of local entropy versus scale, which
can be used to determine the best scale for the considered point.

Since larger scale and higher local image difference are also
preferred, the saliency value of voxel x, denoted as A(sx , x), is
defined by the maximal local entropy value, weighted by both
the best scale sx and a self-dissimilarity measure in the scale
space,

A(sx, x) = L(sx, x) ·
{

sx ·
∑

i

∥∥∥∥∥ �pi(s, x)

�s

∣∣∣∣
sx

∥∥∥∥∥ · �i

}
, (12)

where �i is a constant, and the self-dissimilarity measure is
defined as the sum of absolute differences of the probability
distribution pi(s,x).

By measuring saliency over the whole image, each voxel
has a saliency value to represent its significance in the image
and also utility in image registration. By using this saliency
measure as the utility of each voxel in image registration,
Q-MI can provide more robust registration results, compared to
the conventional MI-based registration methods, which treats
each voxel equally.

Please cite this article as: H. Luan, et al., Multimodality image registration by maximization of quantitative–qualitative measure of mutual information,
Pattern Recognition (2007), doi: 10.1016/j.patcog.2007.04.002

http://dx.doi.org/10.1016/j.patcog.2007.04.002


ARTICLE IN PRESS
H. Luan et al. / Pattern Recognition ( ) – 5

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Entropy

scale

L
(s

,x
)

Fig. 1. An example of finding the best scale for a given point. (a) Red circles denote the different scales, (b) the curve shows the change of local entropy
versus scale. The best scale for this example is about 23, as indicated by the gray arrow (notice the radius of the black region in (a) is 15).

3.3. Joint utility

Once the utility has been defined for each voxel in the two
images under registration, we are ready to define the joint
utility for each intensity pair in the two images. Let IR(x) be
the intensity of reference image R at a location x, and IF (y) be
the intensity of floating image F at a corresponding location y,
let AR(x) and AF (y) be the utility values of voxel x in R and
voxel y in F, respectively, the joint utility of intensity pair i and
j can be defined as

u0(i, j) =
∑
x,y∈�

IR(x)=i,IF (y)=j

AR(x) • AF (y), (13)

where � is the overlap region of images R and F, and “·” acts
as an operator to combine the utility values from the reference
image R and the floating image F. The voxel x in the reference
image R and the voxel y in the floating image F are the corre-
sponding points under the current transformation T. In order to
emphasize the joint occurrence of two salient voxels, we use
multiplication operation to integrate the saliency values from
two images R and F.

Fig. 2 shows an example of estimating the joint utility of an
intensity pair according to Eq. (13). Given a reference image
(Fig. 2(a)) and a floating image (Fig. 2(b)), the joint utility
of an intensity pair, e.g., (50, 222), can be estimated as fol-
lows. First, we find all the corresponding point pairs such as
{(x1, y1), (x2, y2), . . . , (x5, y5), . . .} in the two images, so that
all the x points in Fig. 2(a) have intensity 50, and all the y
points in the floating image have intensity 222. Then, the joint
utility u0(50, 222) is calculated from these point pairs as
demonstrated in Fig. 2(c).

As we have mentioned before, the joint utility is used to
reflect the importance of intensity pairs under the current
registration state, not used to balance the roles of different
intensity pairs in the image registration. As such, the joint util-
ity is not normalized when it is used to calculate Q-MI. Since
we determine the joint utilities according to the utilities of vox-
els in the two images, Q-MI thus contains the amount of useful

information that one image contains about another. Find-
ing a transformation that maximizes the Q-MI of these two
images will align the floating image onto the reference image,
wherein the voxels with higher utilities act the major role in
determining the transformation parameters.

3.4. Optimization

To increase the robustness and also save the computation
time, a multi-resolution framework of registration [40,41] is
performed using four resolutions, as described next.

• In the coarsest resolution, an exhaust search over all the pre-
scribed rotation parameters (including both coarse and fine
rotation parameters) is performed. Coarse and fine rotation
parameters are obtained by dividing the input search range
by their own rotation increments [40,41]. For each coarse
rotation parameter, an optimization of the translation pa-
rameters is performed; while for each fine rotation parame-
ter, the translation parameters are first interpolated from the
results using the coarse rotation parameters, and then opti-
mized. The objective of these two steps is to try a set of rota-
tion parameters and find out the best rotation and translation
parameters. Since the calculation is carried out under the
lowest resolution, for each best rotation parameter, a number
of candidate transformation parameters in the local maxima
are selected for further consideration in the next step.

• In the second coarsest resolution, a local optimization is per-
formed on each of the candidate transformation parameters,
with random perturbations. After optimization, a transfor-
mation parameter that yields the highest values for Q-MI is
chosen, and it is optimized in the next step.

• In both the second finest and the finest resolutions, a local
optimization is also performed on the input candidate trans-
formation parameters, and then the final registration result is
obtained.

It is worth noting that, in this paper, only rigid transforma-
tion with three rotation and three translation parameters are
considered. Also, for the purposes of comparison, a similar
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x1 x2 x3 x4 x5

IR(x) 50 50 50 50 50

AR(x) 1.23 1.35 1.16 1.21 0.92

41.618.192.096.0*21.197.0*16.1

16.1*35.112.1*23.1)222,50(0

=+++
++=u

y1 y2 y3 y4 y5

IF(y) 222 222 222 222 222

AF(y) 1.12 1.16 0.97 0.96 1.18

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Fig. 2. An example of estimating joint utility of an intensity pair. (a) A reference image, (b) a floating image, and five corresponding point pairs with intensity
50 in image (a) and intensity 222 in image (b) are selected, (c) a procedure of demonstrating the estimation of joint utility of the intensity pair (50, 222),
from five selected point pairs.

optimization scheme is performed for the MI-based registration
algorithms.

4. Experimental results

A number of experiments have been carried out to evalu-
ate the performance of the Q-MI-based registration algorithm
in aligning the multimodal images of brains such as MR
PD-weighted, MR T1-weighted, MR T2-weighted, CT, and
PET images, obtained from the Vanderbilt Retrospective Reg-
istration Project [29]. MR images are with 256 × 256 voxels in
plane, 20–16 slices, and voxel size of 1.25 mm × 1.25 mm ×
4.0 mm. CT images are with 512 × 512 voxels in plane, 27–34
slices, and voxel size of 0.65 mm × 0.65 mm × 4.0 mm. PET
images has 15 slices, each with 128×128 voxels and the voxel
size of 2.59 mm × 2.59 mm × 8.0 mm. It is worth noting that
there exist scale differences between these modality images
due to different voxel sizes used. In the following, we first
compare the Q-MI- and MI-based registration functions, and
then evaluate the robustness and accuracy of the Q-MI- and
MI-based registration algorithms, respectively.

4.1. Registration functions

An ideal registration function that measures the similarity
of two images should be smooth and convex with respect to
different transformation parameters. Also, the global maxi-
mum of the registration function should be close to the correct
transformation parameters that align two images perfectly.
Moreover, the capture range around the global maximum

should be as large as possible, and the number of local max-
ima of the registration function should be as small as pos-
sible. These criteria will be used to evaluate the registration
functions generated by the Q-MI and the MI measurements,
respectively.

The registration function of Q-MI can be generated by
measuring the Q-MI of two images under all possible transfor-
mations. For the images used in our experiments, their relative
transformation parameters can be determined with the aid
of four fiducial markers implanted in the patients [29]. That
means, we can first align all testing images into the same space
by using the four fiducial markers, and then calculate the Q-MI
measures of two testing images under different transformations
(i.e., rotation or translation), thereby obtaining a registration
function of Q-MI. Similarly, a registration function of MI can
be obtained.

The registration functions of Q-MI and MI are extensively
compared on three different cases, i.e., registering MR T1
image with (1) MR T2 image, (2) CT image, and (3) PET im-
age. For visual inspection, the brain images used in these exper-
iments are shown in Figs. 3(a)–(d), along with their color-coded
utilities in Figs. 3(e)–(h). Notice that all registration functions
in these experiments are obtained by using the down-sampled
images with scale 3 at each dimension, and also the original
joint utility u0(IR, IFT

) is used to calculate the registration
function of Q-MI. Experimental results on these three different
registration cases are detailed below. Notice that each registra-
tion function in Figs. 4–7 represents a single Q-MI function
of two images under registration, with respect to each possible
translation or rotation existing between them.
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Fig. 3. Different modality images of the same brain, used for evaluating the registration functions of Q-MI and MI. (a) MR T1 image, (b) MR T2 image,
(c) CT image, (d) PET image, and (e)–(h) the respective color-coded utility maps of the images in (a)–(d). Here, yellow and white denote the high utilities.

Fig. 4. The registration functions of Q-MI and MI in aligning MR T1 image with MR T2 image. The top row shows the registration functions of MI, while
the bottom row shows the registration functions of Q-MI. From left to right: (a) and (d) rotation around x-axis, (b) and (e) rotation around y-axis, (c) and (f)
translation along x-axis.

4.1.1. Registering MR T1 image with MR T2 image
MR T1 and T2 images are both structural images, containing

detailed anatomical information. The registration between them
is relatively easy. The respective registration functions of Q-MI
and MI with respect to different rotations and translations are

plotted in Fig. 4. The top row shows the registration functions of
MI versus the rotation around x-axis (Rx), the rotation around
y-axis (Ry), and the translation along x-axis (Tx), respectively.
The bottom row shows the corresponding registration functions
of Q-MI.
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Fig. 5. The total amount of joint utilities within the overlap region of the two images, for the cases of (a) rotation around x-axis, (b) rotation around y-axis,
and (c) translation along x-axis, respectively.

Fig. 6. The registration functions of Q-MI and MI in aligning MR T1 image with CT image. The top row shows the registration functions of MI, while the
bottom row shows the registration functions of Q-MI. From left to right: (a) and (d) rotation around x-axis, (b) and (e) rotation around y-axis, (c) and (f)
translation along x-axis.

By comparing (a) and (b) with (d) and (e) in Fig. 4, respec-
tively, we can observe that the registration functions of Q-MI is
much smoother than those of MI. Moreover, the capture range
in the registration function of Q-MI is relatively large, e.g., the
change of registration function with respect to the rotations
around x- and y-axes is smoothly extended relatively far from
the global maximum. All of these excellent properties should
contribute to the integration of utility information into the
Q-MI calculation, particularly with salient voxels contributing
more in the image registration. Notice that the absolute value of
Q-MI is larger than that of MI. This is because the joint

utility used for each intensity pair is not normalized by the
total utility in the whole image.

By comparing Figs. 4(c) with (f), we can observe that the
registration function of Q-MI is smoother than that of MI, but
it drops quickly with the increase in translation, thus it does not
extend its capture range like it does in rotation. This is because
the overlay region of the two images drops very quickly when
translating one image from the other, compared to the cases of
rotating images. This makes the total amount of joint utilities
in the overlap region of the two images also drops very quickly,
as proved in Fig. 5. According to Fig. 5(c), the total amount of
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Fig. 7. The registration functions of Q-MI and MI in aligning MR T1 image with PET image. The top row shows the registration functions of MI, while
the bottom row shows the registration functions of Q-MI. From left to right: (a) and (d) rotation around x-axis at low resolution, (b) and (e) rotation around
x-axis at high resolution, (c) and (f) translation along y-axis at low resolution.

joint utilities becomes zero, when the translation is sufficiently
large and thus no overlap region exists. On the other hand, even
the rotation can be very large, the overlap region between two
brain images always exist, thus the total amount of joint utilities
will not decrease to zero, as indicated in Figs. 5(a) and (b).

4.1.2. Registering MR T1 image with CT image
Although MR T1 and CT images are quite different, they

still have similar structures, e.g., skull. According to the reg-
istration functions of Q-MI and MI shown in Fig. 6, it can be
observed again that the registration functions of Q-MI are much
smoother and have relatively large capture range, compared to
the registration functions of MI, for the cases of rotating images
around x- and y-axes. Notice that, for the case of translation,
although Q-MI does not extend its capture range, it still makes
the registration function much smoother.

4.1.3. Registering MR T1 image with PET image
MR T1 image is different from PET image: one is a structural

image, while the other is a functional image usually in very low
resolution. The only common information in these two modality
images is the overall shape of the brain, therefore registering
these two images becomes relatively difficult. According to the
registration functions of Q-MI and MI shown in Fig. 7, we can
see again that the registration functions of Q-MI are relatively
smooth, although not as smooth as the registration functions
generated when aligning two structural images as demonstrated
before.

4.2. Robustness of registration

A robust registration algorithm should be able to recover the
true transformation between the two images under registration,
even if the initial misalignment between them is large. Accord-
ingly, the robustness of the Q-MI- and MI-based registration
algorithms is evaluated on various amounts of initial misalign-
ment between MR T1 image and MR T2 image, as well as
between MR T1 image and CT image.

Four sets of tests have been performed, with the degrees
of initial misalignment rotation angles randomly picked from
the four different rotation ranges, i.e., [−5, 5], [−10, 10],
[−20, 20], and [−30, 30] degrees, respectively. In particular,
altogether, we performed 50 tests for each of four different
rotation ranges. Notice that, for each test, the registration is
considered as successful if the difference between the estimated
transformation and the ground-truth transformation is less than
a pre-defined threshold. Similar to Ref. [42], the threshold for
each transformation parameter can be, respectively, selected as
4◦ for rotation around x-axis or y-axis, 2◦ for rotation around
z-axis, 2 mm for translation in x-axis or y-axis, and 3 mm for
translation in z-axis.

The respective numbers of successful registration cases
for each of the four different rotation ranges, using the Q-
MI- and MI-based registration algorithms are summarized in
Fig. 8. These results indicate that the Q-MI-based registra-
tion algorithm produces much higher successful rate, and thus
it is more robust than the MI-based registration algorithm,
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Fig. 8. The number of successful registrations for 50 tests of each of four different rotation ranges, using the Q-MI- and MI-based algorithms, respectively.
(a) The results in registering MR T1 image with MR T2 image, (b) the results in registering MR T1 image with CT image.

Fig. 9. Visual inspection for the registration results obtained using Q-MI- and MI-based registration algorithms, respectively. (a) A failing case by the MI-based
registration algorithm, (b) the result for the same case by the Q-MI-based registration algorithm. The white contours are the boundaries of the aligned CT
image, overlaid on the MR T1 image at three different cross-sectional views.

particularly for the fourth rotation range [−30, 30], where the
degrees of initial misalignment rotation around x-, y- and z-
axis are randomly picked up from a relatively large rotation
range. This phenomenon becomes much more obvious when

registering the MR T1 image with the CT image as shown in
Fig. 8(b). For example, the MI-based registration algorithm
can be successful only for 8 out of 50 tests for the fourth rota-
tion range [−30, 30]; on the contrary, the number of successful
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Fig. 10. Median alignment errors by the MI-based registration algorithm (top) and the Q-MI-based registration algorithm (bottom), when aligning CT images
with MR (PD, T1 and T2) images.

registration of the Q-MI-based registration algorithm is close
to 50. For visual inspection, one failing case by the MI-based
registration algorithm is displayed in Fig. 9(a), while the result
on the same case by the Q-MI-based registration algorithm is
given in Fig. 9(b). Notice that the white contours in this figure
represent the boundaries of the aligned CT image.

4.3. Registration accuracy

The registration accuracy between the Q-MI- and MI-based
registration algorithms is also compared by aligning real CT
images (or PET images) with MR images of the same subject,
as demonstrated in Figs. 10 and 11 with provided median align-
ment errors. As indicated in Fig. 10, there are five cases for
each experiment of registering CT images with MR (PD, T1
or T2) images. It can be observed that the Q-MI-based regis-
tration algorithm can successfully register all pairs of images,
if 4 mm registration errors are regarded as successful. Also, for
all of the successful registration cases, the accuracy of registra-
tion produced by the Q-MI-based registration algorithm seems
a little bit better than that obtained by the MI-based registra-
tion algorithm. We will quantitatively compare the registration
accuracy next.

As shown in Fig. 11, there are three cases for each exper-
iment of registering PET images with MR (PD, T1 or T2)
images. It can be also observed that the Q-MI-based registra-
tion algorithm is more successful, compared to the MI-based

registration algorithm. However, there is still a case that is ob-
viously failed. This might be due to the low resolution of PET
images, and also strong noises in PET images. On the other
hand, the alignment results by the MI-based registration algo-
rithm become much worse when registering PET images with
MR images, i.e., two out of the three tests have been failed. This
is because of a lot of local maxima in the registration function
generated by the MI-based registration algorithm, as indicated
in Figs. 7(a) and (b). Notice that, for the successful registration
cases, the accuracy of MI-based registration algorithm seems
better than that by the Q-MI-based registration algorithm. The
quantitative comparison is provided next.

For quantitatively comparing the registration accuracy of
both algorithms, we calculate the average of the registration
errors for all the successful cases when registering CT images
with MR images, and PET images with MR images. As sum-
marized in Table 1, the Q-MI-based registration algorithm can
register CT images with MR images a little better than the MI-
based registration algorithm. However, it becomes worse when
registering PET images with MR images. Also, for both algo-
rithms, the registration errors are smaller when registering CT
images with MR images, compared to the cases of registering
PET images with MR images. This is because CT and MR im-
ages are both structural images, thus they are relatively easy to
register. It should be emphasized that, here, only the success-
ful registration cases are compared. As indicated before, the
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Fig. 11. Median alignment errors by the MI-based registration algorithm (top) and the Q-MI-based registration algorithm (bottom), when aligning PET images
with MR (PD, T1 and T2) images.

Table 1
Comparison on the registration errors between the Q-MI and MI-based reg-
istration algorithms, on all successful registration cases

Image pair MI-based registration
(mm)

Q-MI-based registra-
tion (mm)

CT and MR 1.10 1.07
PET and MR 1.48 2.64

Q-MI-based registration algorithm is much more successful in
image registration.

From Table 1, it can also be observed that the Q-MI-
based registration method can achieve sub-voxel accuracy of
registration. For CT and MR image registration, all registra-
tion errors are within 3 mm, which is reasonable considering
the slice thickness of the CT images 4 mm. For PET and MR
image registration, all registration errors are within 4 mm for
successful cases, which is also reasonable considering the slice
thickness of the PET images 8 mm.

5. Conclusion

A novel image similarity measure, called quantitative–
qualitative measure of mutual information (Q-MI), has been
presented for robust registration of multimodality brain
images. By utilizing the concept of both quantitative and
qualitative information measures of events, Q-MI incorporates

utility information into the similarity measure of the two
images, and hence it allows the registration procedure focus-
ing more on matching the voxels with higher utility values,
such as the regions of interest or salient voxels. Experimental
results demonstrate that the registration function generated by
Q-MI is much smoother than that by MI, and it has a larger
capture range due to the incorporation of the joint utilities
of the two images into the Q-MI measurement. Moreover,
Q-MI-based registration algorithm is more robust than the
MI-based registration algorithm in registering multimodality
brain images. Finally, experimental results also indicate that
the increase of robustness by our Q-MI-based registration will
not sacrifice the accuracy of image registration, i.e., sub-voxel
accuracy can be still achieved. In the future, we will extend
this Q-MI-based registration algorithm to non-rigid image
registration [43].
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