Diffusion magnetic resonance (MR) imaging is evolving into a potent tool in the examination of the central nervous system. Although it is often used for the detection of acute ischemia, evaluation of directionality in a diffusion measurement can be useful in white matter, which demonstrates strong diffusion anisotropy. Techniques such as diffusion-tensor imaging offer a glimpse into brain microstructure at a scale that is not easily accessible with other modalities, in some cases improving the detection and characterization of white matter abnormalities. Diffusion MR tractography offers an overall view of brain anatomy, including the degree of connectivity between different regions of the brain. However, optimal utilization of the wide range of data provided with directional diffusion MR measurements requires careful attention to acquisition and postprocessing. This article will review the principles of diffusion contrast and anisotropy, as well as clinical applications in psychiatric, developmental, neurodegenerative, neoplastic, demyelinating, and other types of disease.
Described by Le Bihan et al (1) in 1986, diffusion-weighted (DW) imaging has rapidly been adopted into the radiologic armamentarium. The most common application is the early detection of ischemia, as manifested by restricted diffusion in a territorial distribution (2). Clinically, DW imaging is nearly ideal for this purpose: It is highly sensitive, highly specific, and noninvasive and provides a diagnosis within the therapeutic window (3). However, the scope of diffusion imaging extends beyond the detection of acute ischemia. By incorporating directionality into a DW measurement, diffusion-tensor (DT) images can be obtained. Rather than probe cellular pathophysiology, DT imaging provides a means of investigating tissue microstructure and brain anatomy. This article will review the principles of diffusion contrast and anisotropy, as well as clinical applications in psychiatric, developmental, neurodegenerative, neoplastic, demyelinating, and other types of disease.

Principles

Diffusion contrast is based on the self-diffusion of water molecules in tissue (1,4). Although a variety of sequences are now used to acquire DW images, all DW sequences include two equal and opposing motion-probing gradients. As a result of being subjected to opposing gradients, the signal from a voxel will decrease exponentially as a function of the strength of the gradients (G), the duration of the gradients (Δ), the amount of time passing between the gradients (δ), and the diffusion coefficient of water molecules in the voxel (D). The first three factors do not vary from voxel to voxel and can be quantified collectively with a b value, defined as $b = G^2 \delta^2 (\Delta - \delta/3)$, where G is the gyromagnetic constant. Only intravoxel diffusion (D) varies from voxel to voxel, and thus contrast in a DW image is a function of the apparent diffusion coefficient. The relative contributions of T2 contrast and anisotropy, as well as clinical contrast and anisotropy, as well as clinical contributions to preoperative planning in neuro-oncology (5). Anisotropic diffusion is an effect of the microstructural properties of the voxel, and decreased anisotropy is a common feature of neuronal abnormalities. The relationship between tissue microstructure and anisotropy is probably multifactorial: Evidence is mounting for the hypothesis that the integrity of the myelin sheath and axonal membrane is reflected by restriction of diffusion orthogonal to the fiber, whereas the integrity of intra-axonal structures (such as microtubules) is positively correlated with diffusion parallel to the fiber (6–12). However, anisotropy may also be decreased from nonspecific abnormalities such as vasogenic edema.

The tensor model was developed to characterize diffusion in anisotropic voxels, where it cannot be represented by a single value due to its directional dependence. Several measures may be derived from a tensor. For example, a three-dimensional principal eigenvector indicates the direction of greatest diffusion within a voxel. Likewise, scalar (directionless) eigenvalues signify the magnitude of the diffusivities along the principal eigenvector and two orthogonal minor eigenvectors.

The tensor model, it is assumed that a water molecule undergoing diffusion for a limited time will generally be constrained to a volume known as the diffusion ellipsoid. This volume is spherical in voxels with isotropic diffusion, where water diffusion is completely symmetric. In contrast, voxels with anisotropic diffusion have oblate (flattened) or protrate (elongated) diffusion ellipsoids, depending on the relative magnitudes of the eigenvalues. Although it is possible to produce an image that represents the diffusion ellipsoid in every voxel, interpreting such an image is cumbersome. For this reason, properties of the tensor are often abstracted by various indices to produce grayscale or color maps. For example, the trace is a simple index of diffusion determined by the sum of the principal diffusivities. Similarly, fractional anisotropy (FA) is an index ranging from 0 (isotropic) to 1 (maximally anisotropic) and is defined as by using the following equation:

$$FA = \frac{\text{tr(D)}}{3}$$

$$\sqrt{\frac{(\lambda_1 - \lambda)^2 + (\lambda_2 - \lambda)^2 + (\lambda_3 - \lambda)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

for eigenvalues λ_1, λ_2, and λ_3 and mean diffusivity λ. Anisotropy maps are often color encoded to represent directional...
information regarding the principal eigenvector (Fig 2). Taken together, a combination of these maps provides a useful compromise between ease of interpretation and clinical utility. Even at low resolution, they can be used to segment white matter tracts by visual inspection, thus allowing a radiologist to evaluate “white-white” contrast.

Acquisition

To construct a map of apparent diffusivity coefficients, images must be obtained by using at least two \(b \) values. Typically, a DW image with a \(b \) value ranging from 700 to 1200 sec/mm\(^2\) is used with an accompanying \(b_0 \) image (13–17). The diffusivity trace map is derived from the three principal diffusivities and requires four measurements: a \(b_0 \) image and DW images with motion-probing gradients applied in three orthogonal directions (14). To produce anisotropy maps or perform tractography, the full tensor must be determined for each voxel. In theory, this can be accomplished by using \(b_0 \) image and DW images acquired with six different motion-probing gradients. In practice, however, more than six DW images are often obtained to improve reliability, either by repeating the acquisition or by using additional motion-probing gradients. The optimal number of motion-probing gradients and their orientation are under debate, but diffusion-encoding schemes making use of 12 or more motion-probing gradients are not unusual (14,18,19).

The signal from tissue that undergoes gross motion may be misinterpreted as increased diffusivity, therefore scan times are generally kept short by using large voxel sizes and fast acquisition techniques such as echo-planar imaging (20). However, DT imaging with spin-echo echo-planar imaging and (less commonly used) gradient-echo echo-planar imaging is associated with several forms of artifacts. Some, such as eddy current distortion, are amenable to correction during postprocessing and can further be reduced with a modified acquisition (21–27). Likewise, artifacts induced with cardiac pulsation can be decreased with cardiac gating (28). Cerebrospinal fluid, which has a very high apparent diffusion coefficient, can contaminate measurements in nearby voxels; this can be addressed by decreasing voxel size or using fluid-attenuated inversion-recovery DW imaging (29–33).

On the other hand, susceptibility artifact at air-bone interfaces in the skull is more difficult to correct. Single-shot
stimulated-echo acquisition mode, or STEAM, MR imaging has shown promise in reducing susceptibility artifact (34). Several multi-shot diffusion protocols have also been used to reduce susceptibility artifact without introducing phase errors from subject motion (35). For example, line-scan imaging is relatively insensitive to motion, and although used mainly in the spine, it has also been applied to DT imaging of the brain (36,37). Alternately, navigator information can be acquired during a multi-shot sequence to account for motion during reconstruction. One such approach is periodically rotated overlapping parallel lines with enhanced reconstruction, or PROPELLER, DT imaging, which acquires data in a rotating blade of k-space (38–40). Similarly, self-navigated interleaved spiral, or SNAILS, DT imaging acquires data through a spiral in k-space (41). In both cases, the oversampled center of k-space provides the navigator data. Finally, parallel imaging has proved useful in reducing susceptibility artifact in both single-shot and multi-shot acquisitions (42–44).

Although the tensor model can represent most white matter regions, it does not adequately describe voxels with crossing, diverging, or converging white matter tracts (45–47). These fiber tracts...
tracts theoretically could be resolved with improved voxel resolution, perhaps by using high-field-strength imaging (48). Presently, however, multiple directions of diffusion within a single voxel are modeled with higher order vectors (49–51). Higher order methods generally involve examining q-space, which contains the Fourier transform of diffusion properties just as k-space in conventional MR imaging contains the Fourier transform of magnetic properties (52–54). DT imaging is based on a very limited sampling of q-space, and the resulting ellipsoids rely on several assumptions regarding the properties of diffusion in a voxel (49,55). High angular resolution diffusion imaging, or HARDI, methods, while more time consuming than DT imaging, use increased sampling in q-space to produce an improved diffusion profile (49,56–58). Diffusion spectrum imaging, for example, uses data throughout all of q-space to reconstruct a complete diffusion profile (50,59). In contrast, q-ball imaging samples points that are arranged on the surface of a sphere in q-space, reducing acquisition times by focusing on the diffusion parameters that are most relevant to tractography. Q-space techniques have proved useful in resolving multiple white matter orientations in regions such as the centrum semiovale, where DT imaging generally performs poorly (60–62). However, their steeper technical requirements have limited their clinical use.

Once fiber orientations have been determined for a sufficient number of voxels, tractography can be used to draw inferences regarding the overall geometry of white matter in the brain. A wide variety of algorithms are used for this purpose (Fig 3). Generally, streamline (deterministic) tractography connects neighboring voxels by propagating the ends of fiber tracts from user-defined seed voxels until termination criteria are met, such as excessive angular deviation of the fiber tracts or subthreshold voxel anisotropy (46,63–68). Although the seed voxels define the origin of all fiber tracts under examination, additional regions may be designated to restrict the output to a tract of interest.

For instance, tractography of the corticospinal tract may include fiber tracts if and only if they pass through both the internal capsule and the cerebral peduncles (Fig 3a). Tract selection and seed placement are typically highly interactive, which can result in strong operator dependence.

Other algorithms emphasize quantification of the probability of connection between two points, sometimes omitting the linear structures generated in streamline tractography (Fig 3b) (69,70). To improve the depiction of regions of fiber crossing, tractography algorithms have been developed that propagate a wavefront of varying size rather than a line, allowing fiber tracts to diverge and recombine (61,71–73). Probabilistic (distributed) tractography produces a global map that may be analyzed independently from other DT imaging measures; the value of each voxel in the map is the likelihood that the voxel is included in the diffusion path between two ROIs (Fig 4). Probabilistic methods are especially useful for tracking through regions of lower anisotropy, including gray matter (69).

Although tractography corresponds well to classic neuroanatomy, it is vexed by the problem of validation: the degree
to which its results differ from those of anatomic methods such as dissection (75). A one-to-one correspondence would be optimal, as tractography could then serve as a substitute for other methods. But even divergence between tractography and traditional anatomic methods would not necessarily diminish its utility; if its findings in disease are reproducible, then tractography evidently measures something that varies according to pathologic features and therefore may be valuable. Thus, it is encouraging to find that tractography has properties appropriate to useful clinical and research tools, such as high interobserver and intraobserver reliability (76,77).

Analysis

DT imaging produces numerous measures ranging in dimension from scalars to tensor fields, which calls for a wide variety of statistical techniques to perform group analyses. Specific methods for the statistical analysis of full tensors remain under development (78,79). Currently, scalar DT imaging measures (including but not limited to anisotropy, diffusivity, and probability maps) are most commonly compared by using histogram, ROI, or voxel-based analysis. To establish confidence intervals in these measures, bootstrap methods repeatedly sample data from multiple acquisitions (80–83).

Histogram analysis does not require any presuppositions regarding anatomy or pathologic features, making it suitable for widespread diseases such as multiple sclerosis or small vessel ischemic disease (74,84–86). The brain is considered globally, and the frequencies of particular DT imaging values in different individuals are evaluated. Consequently, only global conclusions can be drawn regarding the composition of white and/or gray matter, which may be a disadvantage when considering lesions in the brain, as their effects are often dependent on location.

ROI analysis is used to test hypotheses regarding specific regions where disease is suspected. If motor symptoms are present, for example, DT imaging...
measures may be calculated only in voxels believed to contain the internal capsule. Any significant differences that are detected can be ascribed to the ROI, thus offering a possible correlation between structure and function. Potential pitfalls include bias in ROI selection, which can partially be addressed by automation (87–90). In addition, ROIs drawn on DT images may suffer from artifact and decreased resolution, whereas those drawn on higher resolution images must be accurately registered to the DT images. Intersubject registration can be used to reduce error by standardizing ROIs on every subject. However, registration of full tensor datasets must be performed carefully; in registered tensor maps, unlike scalar maps, corresponding voxels do not have the same values since the operations used to map voxels during registration should change the orientation of the tensors. For instance, a shear deformation should cause tensors to realign in the direction of the shear. Thus, conventional registration should be followed by proper reorientation of tensors (91–93).

Finally, DT imaging measures can be compared on a voxel-by-voxel basis to localize differences between groups without a priori assumptions regarding the location of pathologic features (although voxels near each other are often assumed to be correlated to mitigate the problem of multiple comparisons) (94). Voxel-based analysis is usually less operator dependent and more easily automated than ROI analysis, but it can only be performed after intersubject registration (91–93). Statistical packages originally developed for blood oxygen level–dependent (BOLD) functional MR imaging have been adopted for DT imaging measures, including scalar maps of anisotropy and diffusivity (95). Nevertheless, it is important to be aware of the limitations of these methods when interpreting results, particularly when statistically significant voxels or clusters are detected that do not have a reasonable anatomic correlate (96,97).

Tractography is still in its infancy, and no consensus has emerged regarding the best means of analyzing its output. It is often used to segment white matter into specific tracts; the corpus callosum, for example, has been segmented according to the cortical destination of its fiber tracts, with correlation of callosal lesions to clinical presentation (98,99). One of the more promising methods of analysis is to examine a DT imaging measure such as anisotropy along the course of a selected fiber tract, which can either be performed during tractography or by defining a specific reference frame afterward (100–102). Finally, probabilistic tractography has been used to generate a connectivity matrix describing the relationships between every pair of voxels; by examining patterns within the matrix, clusters of white matter with homogeneous connectivity can be determined (103). It is important to bear in mind that tract-
Tractography findings can be affected by any process that alters diffusion anisotropy, including those external to the axon such as vasogenic edema. Thus, interpretation of tractography requires an appreciation of the distinction between anatomy and physiology.

Applications

Normal Brain

All of these types of analyses have been used to demonstrate the relationship between white matter structure and function. For example, IQ has been positively correlated with anisotropy in white matter association tracts (104). Reading ability has been correlated with anisotropy of the left temporoparietal white matter, where tractography has localized the white matter circuitry connecting Broca and Wernicke language areas (Fig 5) (105–110). In visual pathways, increased anisotropy has been correlated with improved reaction time, and tractography can be used to demonstrate topographically ordered fiber tracts in normal subjects (intriguingly, these fiber tracts are disorganized in the blind) (111–114).

Tractography findings have shown excellent correlation with functional data. For example, probabilistic tractography has been used for segmentation of the thalamus according to its cortical connectivity, which corresponds well to segmentation of the thalamus at BOLD functional MR imaging (69,115). Likewise, probabilistic tractography of the medial frontal cortex has demonstrated an anatomic boundary that corresponds to the functional boundary between supplemental motor cortex and presupplemental motor cortex (103). Throughout the brain, regions with similar tractographic features tend to be functionally co-activated, informally validating the axiom that “neurons that fire together, wire together” (103,115,116).

Developmental Abnormalities

In premature newborns, increased anisotropy is found in developing cortical gray matter rather than in unmyelinated white matter, and cortical anisotropy steadily decreases during the first few months of life (99,117–125). This likely reflects the radial anisotropy of the glial scaffolding that guides the migration of neurons to the cortex (126,127). Unsurprisingly, a spectrum of migrational abnormalities and other developmental brain disorders has been demonstrated with DT imaging. For example, DT imaging has identified cortical dysplasia with greater sensitivity than did conventional MR imaging (Fig 6) (128). In patients with band heterotopias, tractography has been used to suggest potential connectivity between regions of heterotopic gray matter and normal cortex.
(Fig 7) (129). In lissencephaly, tractography of the grossly abnormal subcortical and deep white matter has demonstrated incomplete development of the fornix and cingulate tracts (130). Tractography in patients with periventricular leukomalacia has supported the hypothesis that spastic paralysis may involve extrapyramidal and sensory pathways (Fig 8) (131,132). DT imaging in patients with alobar holoprosencephaly has demonstrated absent corticospinal tracts (Fig 9) (133). Many white matter tract structures, such as the middle cerebellar peduncles, were found to be smaller in alobar holoprosencephaly than in semilobar holoprosencephaly or lobar holoprosencephaly (Fig 10). Furthermore, the size of the corticospinal tracts and middle cerebellar peduncles in all three variants was correlated with neurodevelopmental status.

Aging and Neurodegenerative Disease
Although mild decreases in anisotropy are a normal result of aging, DT imaging has shown additional abnormalities in patients with several types of dementia and neurodegenerative disease (134–137). For example, a study of patients with early Parkinson disease demonstrated decreased anisotropy in the substantia nigra but normal anisotropy in the putamen and caudate nucleus (138). Increased diffusivity and decreased anisotropy were found in the corpus callosum and the frontal, temporal, and parietal white matter in both patients with Alzheimer disease and those with Lewy body dementia, but the occipital lobes were involved only in the latter—possibly reflecting the greater incidence of visual hallucinations in Lewy body dementia (139–141). Asymptomatic carriers of apolipoprotein E ε4, a susceptibility marker for Alzheimer disease, demonstrated abnormal diffusivity and decreased anisotropy in the parahippocampal white matter, a finding that may be valuable in early diagnosis (142). Likewise, DT imaging in patients with asymptomatic Huntington disease demonstrated decreased anisotropy in several regions of white matter (143). Finally, multiple groups have demonstrated decreased anisotropy and increased diffusivity in the internal capsule and cerebral peduncles of patients with amyotrophic lateral sclerosis (Fig 11) (144–151). Throughout the corticospinal tract, anisotropy decreased as amyotrophic lateral sclerosis progressed, and decreased anisotropy was correlated with slowed nerve conduction time (152–154).

Psychiatric Disease
Since schizophrenia may involve disordered brain connectivity, many investigators have used DT imaging to demonstrate a variety of white matter abnormalities, often correlated with performance on neuropsychiatric tests (155–163). For example, decreased anisotropy in the white matter subserving language centers has been correlated with the presence of auditory hallucinations (160). However, a consensus has not yet emerged regarding the appearance of schizophrenia by using DT imaging, possibly due to differences in methods (96,164–166). Nevertheless, DT imaging continues to be used in psychiatric illnesses with suspected disruption of brain connectivity. For example, decreased anisotropy has been described in the arcuate fasciculus of children with behavior disorders, in the prefrontal white matter of patients with bipolar disorder, and in the right superior frontal gyrus of elderly patients with depression (167–169). Moreover, several regions of white matter demonstrate abnormal anisotropy in children with attention deficit disorder, obsessive-compulsive disorder, and autism (170–172). Finally, decreased anisotropy in the corpus callosum has been
demonstrated in ethanol dependence and may also be a trait of cocaine dependence (173,174).

Demyelinating Disease

The specificity of DT imaging measures for white matter abnormalities has spurred its use in demyelinating diseases, particularly multiple sclerosis. Several groups have demonstrated increased diffusivity and decreased anisotropy in demyelinating lesions (Fig 12) (175–179). In some studies, diffusivity and anisotropy varied with the degree and type of contrast enhancement (177,179,180). However, DT imaging has also demonstrated abnormalities in normal-appearing white matter and normal-appearing gray matter; it is unclear whether the latter represents an inflammatory lesion in gray matter or the effects of retrograde axonal degeneration (181–183). Patients with primary or secondary progressive multiple sclerosis demonstrated increased gray matter diffusivity, compared with patients with relapsing-remitting multiple sclerosis or healthy controls (184). In patients with clinically isolated syndromes (considered a precursor to multiple sclerosis), tractography has defined the corticospinal tracts and demonstrated higher lesion volume within them than in other white matter, although the correlation between disease progression and DT findings is less concrete (185).

Ischemic Disease

The use of diffusion imaging in ischemic disease is expanding well beyond its proved role in detection of early acute ischemia into the domain of prognosis and long-term management of ischemic sequelae. Initial uses of tractography in stroke have demonstrated involvement of sensorimotor pathways by acute ischemic insults with strong correspondence to clinical symptoms (Fig 13) (186–191). Tractography has also demonstrated anatomic reorganization of language pathways after an ischemic insult, concordant with BOLD functional MR findings of reorganized language activation (192). Finally, patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, syndrome demonstrated decreased anisotropy and increased diffusivity in normal-appearing white matter, likely representing early ischemia. Interestingly, DT imaging abnormalities in the frontal lobes and cingulate fasciculus have been associated with specific types of cognitive impairment in this disease (193,194).

Neoplasms

As well as improving sensitivity, DT imaging may also play a role in improving specificity, particularly in radiologically ambiguous lesions such as T2 hyperintense peritumoral voxels. Hyperintense white matter voxels surrounding gliomas, which presumably were partly tu-
mor infiltrated, demonstrated lower anisotropy than did hyperintense white matter voxels of equal diffusivity surrounding metastases and meningiomas, which presumably were merely edematous (195–198). This may have important implications in the delineation of tumor margins beyond what is currently demonstrated with conventional imaging (199,200). Eventually, changes in the diffusivity pattern of a tumor might be used to predict tumor response to chemotherapy and radiation (201,202).

As neurosurgeons increasingly consider the degree to which tumors may displace and disrupt white matter tracts (Fig 14), the anatomic guidance provided by tractography is emerging as an important part of preoperative planning (203–205). This is particularly true of eloquent white matter such as the corticospinal tract, where tractography has been a useful adjunct to intraoperative fiber stimulation (206–208). Preoperative tractography showing tumor involvement of the corticospinal tract has been correlated to motor deficits, even when motor cortex was uninvolved (209). Conversely, normalization at postoperative tractography was predictive of improvement in function, suggesting a role for intraoperative tractography (210,211). For inoperable tumors, tractography may be helpful in gamma knife planning, and it has already been used in the radiosurgical treatment of arteriovascular malformations (212).

Epilepsy

Neurosurgical uses for tractography are not limited to oncology; there are multiple examples of the use of tractography in surgical planning for epilepsy (Fig 15). Intraoperative maps of language centers in epilepsy have been analyzed with tractography to suggest locations of eloquent white matter (213). Tractography has also been used to determine whether seizure foci involved the visual radiations, and findings were concordant with cortical visual evoked potentials (214). Likewise, probabilistic tractography of the Meyer loop in epilepsy was performed with sufficient accuracy to predict visual field

Figure 15: Images in 7-year-old boy involved in a vehicular accident 3 years before and suffering from intractable seizure. Electroencephalography demonstrated persistent discharge of epileptic wave in the right hemisphere. Functional right hemispherectomy was planned for treatment of the intractable seizure. However, patient demonstrated right-side hemiplegia instead of left-side dysfunction. A, Transverse T2-weighted (4000/100; matrix, 352 × 352; FOV, 230 × 230 mm; section thickness, 5 mm) images show cerebromalacia of right hemisphere and atrophy. Precentral gyrus is relatively spared. B, Fractional anisotropy maps show lack of high signal intensity of longitudinal pontine fiber tracts in the left-side cerebral peduncle, suggesting axonal injury (arrows). C, Fiber tractography with superimposed transverse b0 image shows cutting off of left corticospinal tract at the level of left cerebral peduncle due to axonal injury (arrows). Right corticospinal tract is intact although atrophy and cerebromalacia are demonstrated in the remainder of the brain. Callosotomy was performed instead of functional hemispherectomy on the basis of DT and fiber tractography findings, because right hemispherectomy would have resulted in quadriplegia (DT imaging: 32 directions; six-channel sensitivity encoding; sensitivity encoding factor of two; b value, 600 sec/mm2; 6599–8280/70; matrix, 96 × 96; FOV, 220 × 220 mm; section thickness, 2.3 mm).
deficits after temporal lobe resection (215). Although preoperative tractography will probably be intended primarily for the delineation of white matter anatomy, it has also found use in mapping subservient gray matter such as primary motor cortex, particularly in patients unable to comply with the demands of BOLD functional MR imaging (216,217).

Conclusion

There is clearly a broad range of possible applications for DT imaging. However, the clinical status of DT imaging today is somewhat analogous to the status of DW imaging shortly after its introduction: Although the initial results appear promising, the prospective clinical trials that can fully establish its utility have yet to be completed. This will probably change in the future as an increasing number of long-term studies have begun to incorporate DT imaging into their protocols, while data regarding normal variability in DT imaging measures continue to accumulate (218). Nevertheless, the clinical use of DT imaging calls for careful understanding of acquisition and processing issues.

The full potential of DT imaging will probably not be realized until it is integrated with other modalities to obtain a richer characterization of white matter, in a manner analogous to the combination of perfusion and diffusion imaging data used to demonstrate an ischemic penumbra. Perhaps the most intriguing application is the integration of tractography with functional imaging. Activation maps are the natural complement of tractography; a temporal relationship between activated foci implies the existence of subservient fiber tracts, whereas anatomic connectivity between two regions of the brain suggests a functional relationship. The excellent correlation of BOLD functional MR data with tractography findings in motor and visual cortex may illustrate the future of structure-function investigations in the brain, ultimately to culminate in a comprehensive description of the “human connectome” (219).

References

26. Alexander AL, Tsoura JS, Parker DL,

207. Kinoshita M, Yamada K, Hashimoto N, et al. Fiber-tracking does not accurately es...

This is your reprint order form or pro forma invoice
(Please keep a copy of this document for your records.)

Reprint order forms and purchase orders or prepayments must be received 72 hours after receipt of form either by mail or by fax at 410-820-9765. It is the policy of Cadmus Reprints to issue one invoice per order.
Please print clearly.

Author Name	__				
Title of Article	__				
Issue of Journal	_______________________	Reprint #	_____________	Publication Date	________________
Number of Pages	_______________________	KB #	_____________	Symbol	Radiology
Color in Article?	Yes / No (Please Circle)	__			

Please include the journal name and reprint number or manuscript number on your purchase order or other correspondence.

Order and Shipping Information

Reprint Costs (Please see page 2 of 2 for reprint costs/fees.)

Number of reprints ordered	$_________
Number of color reprints ordered	$_________
Number of covers ordered	$_________

Subtotal $_________

Taxes $_________

Shipping Address (cannot ship to a P.O. Box) Please Print Clearly

Name | __ |
Institution | __ |
Street | __ |
City | _____________ | State | ______ | Zip | _____________ |
Country | __ |
Quantity | __________________| Fax | __________________|
Phone: Day | ________________ | Evening | ________________ |
E-mail Address | __ |

Additional Shipping Address* (cannot ship to a P.O. Box)

Name | __ |
Institution | __ |
Street | __ |
City | _____________ | State | ______ | Zip | _____________ |
Country | __ |
Quantity | __________________| Fax | __________________|
Phone: Day | ________________ | Evening | ________________ |
E-mail Address | __ |
* Add $32 for each additional shipping address

Payment and Credit Card Details

Enclosed: Personal Check ___________

Credit Card Payment Details ___________

Checks must be paid in U.S. dollars and drawn on a U.S. Bank.

Credit Card: ___ VISA ___ Am. Exp. ___ MasterCard
Card Number | __________________|
Expiration Date | ________________ |
Signature | __ |

Please send your order form and prepayment made payable to:

Cadmus Reprints
P.O. Box 751903
Charlotte, NC 28275-1903

Note: Do not send express packages to this location, PO Box.
FEIN #: 541274108

Invoice or Credit Card Information

Invoice Address | Please Print Clearly

Please complete Invoice address as it appears on credit card statement

Name | __ |
Institution | __ |
Department | __ |
Street | __ |
City | _____________ | State | ______ | Zip | _____________ |
Country | __ |
Phone | __________________| Fax | __________________|
E-mail Address | __ |

Cadmus will process credit cards and Cadmus Journal Services will appear on the credit card statement.

If you don’t mail your order form, you may fax it to 410-820-9765 with your credit card information.

Signature | __ |
Date | ________________ |

Signature is required. By signing this form, the author agrees to accept the responsibility for the payment of reprints and/or all charges described in this document.

Page 1 of 2
Black and White Reprint Prices

Domestic (USA only)

<table>
<thead>
<tr>
<th># of Pages</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$213</td>
<td>$228</td>
<td>$260</td>
<td>$278</td>
<td>$295</td>
<td>$313</td>
</tr>
<tr>
<td>5-8</td>
<td>$338</td>
<td>$373</td>
<td>$420</td>
<td>$453</td>
<td>$495</td>
<td>$530</td>
</tr>
<tr>
<td>9-12</td>
<td>$450</td>
<td>$500</td>
<td>$575</td>
<td>$635</td>
<td>$693</td>
<td>$755</td>
</tr>
<tr>
<td>13-16</td>
<td>$555</td>
<td>$623</td>
<td>$728</td>
<td>$805</td>
<td>$888</td>
<td>$965</td>
</tr>
<tr>
<td>17-20</td>
<td>$673</td>
<td>$753</td>
<td>$883</td>
<td>$990</td>
<td>$1,085</td>
<td>$1,185</td>
</tr>
<tr>
<td>21-24</td>
<td>$785</td>
<td>$880</td>
<td>$1,040</td>
<td>$1,165</td>
<td>$1,285</td>
<td>$1,413</td>
</tr>
<tr>
<td>25-28</td>
<td>$895</td>
<td>$1,010</td>
<td>$1,208</td>
<td>$1,350</td>
<td>$1,498</td>
<td>$1,638</td>
</tr>
<tr>
<td>29-32</td>
<td>$1,008</td>
<td>$1,143</td>
<td>$1,363</td>
<td>$1,525</td>
<td>$1,698</td>
<td>$1,865</td>
</tr>
<tr>
<td>Covers</td>
<td>$95</td>
<td>$118</td>
<td>$218</td>
<td>$320</td>
<td>$428</td>
<td>$530</td>
</tr>
</tbody>
</table>

International (includes Canada and Mexico)

<table>
<thead>
<tr>
<th># of Pages</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$263</td>
<td>$275</td>
<td>$330</td>
<td>$385</td>
<td>$430</td>
<td>$485</td>
</tr>
<tr>
<td>5-8</td>
<td>$415</td>
<td>$443</td>
<td>$555</td>
<td>$650</td>
<td>$753</td>
<td>$850</td>
</tr>
<tr>
<td>9-12</td>
<td>$563</td>
<td>$608</td>
<td>$773</td>
<td>$930</td>
<td>$1,070</td>
<td>$1,228</td>
</tr>
<tr>
<td>13-16</td>
<td>$698</td>
<td>$760</td>
<td>$988</td>
<td>$1,185</td>
<td>$1,388</td>
<td>$1,585</td>
</tr>
<tr>
<td>17-20</td>
<td>$848</td>
<td>$925</td>
<td>$1,203</td>
<td>$1,463</td>
<td>$1,705</td>
<td>$1,950</td>
</tr>
<tr>
<td>21-24</td>
<td>$985</td>
<td>$1,080</td>
<td>$1,420</td>
<td>$1,725</td>
<td>$2,025</td>
<td>$2,325</td>
</tr>
<tr>
<td>25-28</td>
<td>$1,135</td>
<td>$1,248</td>
<td>$1,640</td>
<td>$1,990</td>
<td>$2,350</td>
<td>$2,698</td>
</tr>
<tr>
<td>29-32</td>
<td>$1,273</td>
<td>$1,403</td>
<td>$1,863</td>
<td>$2,265</td>
<td>$2,673</td>
<td>$3,075</td>
</tr>
<tr>
<td>Covers</td>
<td>$148</td>
<td>$168</td>
<td>$308</td>
<td>$463</td>
<td>$615</td>
<td>$768</td>
</tr>
</tbody>
</table>

Color Reprint Prices

Domestic (USA only)

<table>
<thead>
<tr>
<th># of Pages</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$218</td>
<td>$233</td>
<td>$343</td>
<td>$460</td>
<td>$579</td>
<td>$697</td>
</tr>
<tr>
<td>5-8</td>
<td>$343</td>
<td>$388</td>
<td>$584</td>
<td>$825</td>
<td>$1,069</td>
<td>$1,311</td>
</tr>
<tr>
<td>9-12</td>
<td>$471</td>
<td>$503</td>
<td>$828</td>
<td>$1,196</td>
<td>$1,563</td>
<td>$1,935</td>
</tr>
<tr>
<td>13-16</td>
<td>$601</td>
<td>$633</td>
<td>$1,073</td>
<td>$1,562</td>
<td>$2,058</td>
<td>$2,547</td>
</tr>
<tr>
<td>17-20</td>
<td>$738</td>
<td>$767</td>
<td>$1,319</td>
<td>$1,940</td>
<td>$2,550</td>
<td>$3,164</td>
</tr>
<tr>
<td>21-24</td>
<td>$872</td>
<td>$899</td>
<td>$1,564</td>
<td>$2,308</td>
<td>$3,045</td>
<td>$3,790</td>
</tr>
<tr>
<td>25-28</td>
<td>$1,004</td>
<td>$1,035</td>
<td>$1,820</td>
<td>$2,678</td>
<td>$3,545</td>
<td>$4,403</td>
</tr>
<tr>
<td>29-32</td>
<td>$1,140</td>
<td>$1,173</td>
<td>$2,063</td>
<td>$3,048</td>
<td>$4,040</td>
<td>$5,028</td>
</tr>
<tr>
<td>Covers</td>
<td>$95</td>
<td>$118</td>
<td>$218</td>
<td>$320</td>
<td>$428</td>
<td>$530</td>
</tr>
</tbody>
</table>

International (includes Canada and Mexico)

<table>
<thead>
<tr>
<th># of Pages</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$268</td>
<td>$280</td>
<td>$412</td>
<td>$568</td>
<td>$715</td>
<td>$871</td>
</tr>
<tr>
<td>5-8</td>
<td>$419</td>
<td>$457</td>
<td>$720</td>
<td>$1,022</td>
<td>$1,328</td>
<td>$1,633</td>
</tr>
<tr>
<td>9-12</td>
<td>$583</td>
<td>$610</td>
<td>$1,025</td>
<td>$1,492</td>
<td>$1,941</td>
<td>$2,407</td>
</tr>
<tr>
<td>13-16</td>
<td>$742</td>
<td>$770</td>
<td>$1,333</td>
<td>$1,943</td>
<td>$2,556</td>
<td>$3,167</td>
</tr>
<tr>
<td>17-20</td>
<td>$913</td>
<td>$941</td>
<td>$1,641</td>
<td>$2,412</td>
<td>$3,169</td>
<td>$3,929</td>
</tr>
<tr>
<td>21-24</td>
<td>$1,072</td>
<td>$1,100</td>
<td>$1,946</td>
<td>$2,867</td>
<td>$3,785</td>
<td>$4,703</td>
</tr>
<tr>
<td>25-28</td>
<td>$1,246</td>
<td>$1,274</td>
<td>$2,254</td>
<td>$3,318</td>
<td>$4,398</td>
<td>$5,463</td>
</tr>
<tr>
<td>29-32</td>
<td>$1,405</td>
<td>$1,433</td>
<td>$2,561</td>
<td>$3,788</td>
<td>$5,014</td>
<td>$6,237</td>
</tr>
<tr>
<td>Covers</td>
<td>$148</td>
<td>$168</td>
<td>$308</td>
<td>$463</td>
<td>$615</td>
<td>$768</td>
</tr>
</tbody>
</table>

Minimum order is 50 copies. For orders larger than 500 copies, please consult Cadmus Reprints at 800-407-9190.

Reprint Cover

Cover prices are listed above. The cover will include the publication title, article title, and author name in black.

Shipping

Shipping costs are included in the reprint prices. Domestic orders are shipped via UPS Ground service. Foreign orders are shipped via a proof of delivery air service.

Multiple Shipments

Orders can be shipped to more than one location. Please be aware that it will cost $32 for each additional location.

Delivery

Your order will be shipped within 2 weeks of the journal print date. Allow extra time for delivery.

Tax Due

Residents of Virginia, Maryland, Pennsylvania, and the District of Columbia are required to add the appropriate sales tax to each reprint order. For orders shipped to Canada, please add 7% Canadian GST unless exemption is claimed.

Ordering

Reprint order forms and purchase order or prepayment is required to process your order. Please reference journal name and reprint number or manuscript number on any correspondence. You may use the reverse side of this form as a proforma invoice. Please return your order form and prepayment to:

Cadmus Reprints

P.O. Box 751903
Charlotte, NC 28275-1903

Note: Do not send express packages to this location, PO Box.
FEIN #:541274108

Please direct all inquiries to:

Rose A. Baynard

800-407-9190 (toll free number)
410-819-3966 (direct number)
410-820-9765 (FAX number)
baynardr@cadmus.com (e-mail)