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Simulated deformations and images can act as the gold standard for
evaluating various template-based image segmentation and registra-
tion algorithms. Traditional deformable simulation methods, such as
the use of analytic deformation fields or the displacement of landmarks
followed by some form of interpolation, are often unable to construct
rich (complex) and/or realistic deformations of anatomical organs.
This paper presents new methods aiming to automatically simulate
realistic inter- and intra-individual deformations. The paper first
describes a statistical approach to capturing inter-individual variability
of high-deformation fields from a number of examples (training
samples). In this approach, Wavelet–Packet Transform (WPT) of the
training deformations and their Jacobians, in conjunction with a
Markov random field (MRF) spatial regularization, are used to
capture both coarse and fine characteristics of the training deforma-
tions in a statistical fashion. Simulated deformations can then be
constructed by randomly sampling the resultant statistical distribution
in an unconstrained or a landmark-constrained fashion. The paper
also describes a model for generating tissue atrophy or growth in order
to simulate intra-individual brain deformations. Several sets of
simulated deformation fields and respective images are generated,
which can be used in the future for systematic and extensive validation
studies of automated atlas-based segmentation and deformable
registration methods. The code and simulated data are available
through our Web site.
© 2006 Elsevier Inc. All rights reserved.

Introduction

The plethora of automated methods for deformable registration
of brain images, and their widespread use for template-based
segmentation and labeling, spatial normalization, shape analysis
and a variety of other tasks, has necessitated the construction of
gold or “silver” standards for validation of different methods and
evaluation of their relative merits. Although various methods for
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synthesizing anatomical deformations have occasionally been
adopted in the literature, they typically rely on analytic forms of
deformations, such as linear, polynomial and spline models, or on
the displacement of a number of landmarks followed by the thin
plate spline (TPS) (Bookstein, 1989) or other interpolations. Such
approaches generate relatively simple and/or unrealistic deforma-
tions, and they are unable to capture/simulate the true and full range
of anatomical variability. This paper aims to develop approaches
that simulate anatomically valid deformations, using brain MRI as a
focus, and to generate realistic data sets that could be used for
validation of atlas-based segmentation and registration algorithms.

Two classes of deformations and images are simulated. The first
class includes deformations between different individuals (inter-
individual deformations) and intends to capture inter-individual
morphological variability; it therefore aims to develop a foundation
for generating gold standard for evaluating atlas registration
methods. The second class simulates morphological changes that
can be encountered within the same individual due to growth or
atrophy of brain tissue; it therefore aims to develop a foundation
for generating gold standard for brain development as well as brain
pathology, as these are manifested via change of tissue volume.

With respect to the first class, the basic premise is that a number
of deformation fields are available to be used for estimating the
probability density function (pdf) of high-dimensional deformation
fields, which can then be randomly sampled to generate any
number of synthesized deformations. For the purposes of
demonstrating and testing our methodology, we used a number
of deformations that were obtained using the high-dimensional
deformable registration methods described in (Shen and Davatzi-
kos, 2002; Davatzikos et al., 2003a). This inevitably biases the
generated deformations toward the family of deformations that can
be generated by this particular warping algorithm, and it is
somewhat inevitable because there is no truly unbiased way to
define deformation fields that are realistic and representative of
true anatomical variability. Our rationale was that, in order to
eventually evaluate a number of warping methods, each of them
could be used for training our simulator, and then the rest can be

mailto:zhong.xue@uphs.upenn.edu
http://dx.doi.org/10.1016/j.neuroimage.2006.08.007
www.sciencedirect.com


856 Z. Xue et al. / NeuroImage 33 (2006) 855–866
used for testing via comparison against the simulated ground truth.
A warping method that consistently performs better in capturing
the synthesized (known) deformations is likely to be more
accurate. More accurate training sample deformations could also
be generated by first extensively labeling and landmarking a
number of images (Kristi Boesen et al., 2005), and then applying a
high-dimensional warping algorithm constrained by these manual
labels and landmarks. Such adequately constrained warping
algorithms are likely to generate deformations that are close to a
gold standard, and therefore appropriate for training.

As described above, central to the simulator of inter-individual
morphological variability is the estimation of the pdf of
deformation fields from a limited number of training samples.
This is a very challenging task and is the main focus of this paper.
One of the most popular methods has been the application of the
principal component analysis (PCA) in order to estimate a number
of principal components that are frequently called principal modes
of variation. However, this approach yields poor results when
applied to 3D dense deformation fields, due to under-training in
practical settings. For example, accurately estimating a dense 3D
deformation field of the entire brain could require tens of
thousands of training deformations, if not more. The dramatic
failure of standard methods for estimating covariance matrices and
the associated pdfs has been well known in the signal estimation
literature (Mallat and Wavelet, 1998). Accordingly, in the 1990s,
methods based on scale-space decompositions were investigated.
Our approach, referred to as statistical simulation of deformations
(SSD), builds upon the methods described in Davatzikos et al.
(2003a,b) and Xue et al. (2005), which use wavelet-based
decompositions in order to more accurately estimate and sample
pdfs of high-dimensional deformation fields, when only a
relatively small number of training samples are available (e.g.,
tens, or in the order of 100). Random sampling of the pdfs
estimated by SSD generates synthesized deformations. Moreover, a
method for constrained sampling is also presented, and is
applicable when anatomical landmarks from an individual are also
available, thereby generating deformations that conform to both
group-based statistics of morphological variation and (limited)
anatomical information pertaining to the individual. Compared to
the traditional landmark-based interpolation algorithms, the land-
mark-constrained SSD can generate both richer and anatomically
valid deformations.

The second class of deformations simulates intra-individual
deformations. Unlike inter-individual deformations, intra-indivi-
dual brain deformations reflect the structural changes of an
individual brain at different time points, e.g., tissue atrophy/growth
of a selected structure or within a selected region of a brain. In this
paper, we use the method proposed in Karacali and Davatzikos
(2006) to simulate the atrophy and growth. That algorithm
generates a deformation field by minimizing the difference
between its Jacobian determinants and the desired ones, subject
to some smoothness constraints on the deformation field. The
desired Jacobian determinants describe the volumetric changes of
different tissues or different regions.

As one of the primary goals of this work is to develop a testbed
for validation of deformable registration algorithms, various inter-
individual and intra-individual brain deformations are simulated
using the above approaches and a variety of data sets are generated
for future use as ground truth in testing template-based segmenta-
tion and warping algorithms, and to further perform parameter
optimization of these algorithms.
The remainder of the paper is organized as follows. The
Methods section describes the detailed methods used to simulated
deformations and the corresponding images, and the Stimulation
results section introduces the simulated data sets and performs
evaluations on the simulated data. The Summary and conclusion
section summarizes and concludes with additional discussions and
future directions.

Methods

In this section, we first describe our method for estimating the
multivariate statistics of high-dimensional deformation fields that
reflect inter-individual variability of brain structures, and for
generating new deformations by sampling the statistical models.
Then, we describe how additional anatomical landmarks can be
used to further constrain this sampling process. Finally, we
describe a different type of anatomical deformation that represents
intra-individual anatomical changes, which might occur with
normal development and aging, or with development of disease,
i.e., simulation of tissue growth and tissue atrophy.

Statistical simulation of deformations (SSD)

Description of SSD
Let f(x) be a scalar or vector field defined over the template

image domain Ωt, xinΩt. Estimating the pdf of f from a relatively
small number of training samples is necessary in order to randomly
simulate new deformations via random sampling, or in order to
evaluate the likelihood of a given deformation field in the context
of Bayesian reasoning and/or the context of statistically con-
strained deformable registration. However, the commonly used
PCA method (e.g., Cootes et al., 1994; Miller et al., 1997)
performs poorly when f is of very high dimensionality and only a
limited training set is available to estimate the PCA model. This is
because a global PCA model is able to capture mainly global size
and shape characteristics that are of limited interest and value,
especially for the purposes of simulating complex deformations to
be used for validation purposes. In order to capture finer and more
localized variations of f we follow and extend the framework
proposed in Davatzikos et al. (2003a), which is referred to as the
wavelet-based PCA (W-PCA) model. The W-PCA model decom-
poses f using the Wavelet–Packet Transform (WPT) and subse-
quently captures within-scale statistics via hierarchically organized
PCA models. These PCA models are estimated from statistical
distributions that are both of lower dimensionality, and more
compact due to correlations among variables. For example, the
PCA model derived from a coarse-scale representation of f
represents a very compact distribution due to the smoothing and
down-sampling applied at each level of the wavelet-packet
decomposition; the distribution of high frequency detail within a
local window is also easier to estimate due to its low
dimensionality owing to the small window size. Performing PCA
within each band at a given scale is important due to correlations
among wavelet coefficients corresponding to adjacent locations,
something which is particularly prominent in smooth elastic-type
of deformations, in contrast to, for example, acoustic signals in
which wavelet coefficients are typically assumed to be statistically
independent. The fundamental assumption in W-PCA is that the
wavelet-based rotation renders the covariance matrix of f close to
block-diagonal, thereby enabling a more accurate estimation from
a limited set of examples, compared to the usual sample covariance



Fig. 2. Jacobian determinants, reflecting volumetric changes, could be
expected to be less variable than the displacement fields. For example, the
displacement fields of the precentral gyri are very different for these two
brains, whereas the volumes of these gyri are very similar, leading to much
less variable Jacobian determinants.
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estimation. Generating a random sample from the pdf of f is then
achieved by randomly sampling each PCA model in this hierarchy,
and then using the inverse WPT.

In theory, if the W-PCA model described above captures the
statistics of deformation f accurately, we can just generate sample
deformations as described above. In practice, however, the
assumption that the covariance matrix of f is block-diagonal in
the wavelet-packet basis does not hold exactly. Although it is well
known that for broad classes of signals, correlations across scales
diminish rapidly, they are nonetheless non-negligible for adjacent
scales. Therefore, the resulting deformation fields might have
unrealistic discontinuities. In order to alleviate this problem, we
observe that additional constraints imposed on the estimated
deformation fields can be used to define subspaces in which the
deformation must belong to. Therefore, we require that a valid
deformation field simultaneously satisfies several constraints, i.e.,
it belongs to the intersection of a number of subspaces, each of
which satisfies some constraints on the deformation. Fig. 1 shows
the three subspaces used on our approach. The W-PCA model
applied to the deformation field specifies one such subspace, the
W-PCA model of the Jacobian determinants of the deformation
fields specifies the second subspace, and the Markov random field
(MRF) regularization represents the third subspace.

The second subspace is represented by the W-PCA model of the
Jacobian determinants of the deformation fields. The Jacobian
determinants are included separately from the deformations
themselves because they reflect local volumes of anatomical
structures, which are important from the perspective of spatial
distribution of the amount of brain tissue. Fig. 2 shows two
precentral gyri from different subjects, which differ quite
dramatically in shape, but not in volume. More generally, it would
be reasonable to assume that, although the cortical folding patterns
can vary significantly across individuals, the need of different
cortical structures to occupy certain tissue volume renders the
Jacobian determinant, which is directly related to tissue volume,
relatively less variable across individuals and therefore easier to
estimate from a limited number of samples. Hence, the Jacobian is
considered here as an additional quantity to be constrained in Fig.
1. It is worth noting that the complementary property of the
statistical models of deformation fields and those of the Jacobian
determinants allows us to combine them together by requiring that
a valid deformation field be within the intersection of the
subspaces defined by them. Therefore, a valid deformation field
has to be first sampled randomly from the statistical model of
deformations, and then iteratively constrained by both of the
statistical models. We note, here, that converting a constraint on the
Fig. 1. The space of valid deformations is represented as the intersection of
different subspaces reflecting different aspects of a warping field.
Jacobian determinant to a constraint on the deformation field, i.e.,
finding the displacement field that satisfies certain conditions on
the Jacobian determinant, is a challenging task with no unique
solution. Herein we use (Karacali and Davatzikos, 2004), which
utilizes an iterative projection scheme that minimally, according to
some distance criteria, modifies a given displacement field so that
it satisfies certain conditions on the Jacobian determinant. This
algorithm is used to realize the projection of a given displacement
field to the subspace of “valid Jacobians”.

The third subspace is represented by a nested Markov random
field (MRF) regularization, which imposes spatial smoothness at
different scales in conjunction with the inverse WPT. The purpose
of MRF regularization is to eliminate potential discontinuities
emanating from the assumption of independence across wavelet
bands.

In the following subsections, we first describe the W-PCA
model, which can be used to effectively capture the statistics of
both deformation fields and their Jacobian determinants. Then, we
introduce the MRF regularization in detail. Finally, we summarize
the SSD algorithm for deformable simulation.

The wavelet-PCA (W-PCA) models for estimating the pdfs of
deformation fields and their Jacobian determinants

The W-PCA model is used to estimate the pdf of f, which can
be a deformation field or a Jacobian determinant field, using N
samples. It first applies an L-level WPT to f, and then constructs a
PCA model of the wavelet coefficients of each wavelet band at
level L. Finally, it combines these pdfs of different wavelet bands
together. Fig. 3 illustrates the structure of 1DWPT. For 3DWPT, the
wavelet coefficients at level l are represented by w(l,b), b=0, 1, …,
Bl−1, where Bl =8

l and l=1, 2, …, L. At each level, w(l,0) always
Fig. 3. Illustration of Wavelet–Packet Transform (WPT).
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represents the low-pass wavelet coefficients. For simplicity, f is also
referred to as w(0,0).

After L-level WPT, f can be represented by all the wavelet
coefficients at level L, i.e., w(L,b). Assuming that different bands in
the wavelet subspaces are independent, then the pdf of deformation
f is,

pðfÞ ¼ ∏
BL�1

b¼0
pðwðL;bÞÞ: ð1Þ

The pdf of each band (L,b), p(w(L,b)), can be estimated by
applying PCA to the wavelet coefficients of N sample deformations
fs at that band, denoted as ws

(L,b), s=1, 2, …, N. After performing
PCA, we obtain the mean of the wavelet coefficients w̄ (L,b) and the
matrix Φ(L,b) formed by the eigenvectors of the covariance matrix
of these coefficients, which correspond to the largest K(L,b)

eigenvalues λj
(L,b), j=1, …, K(L,b), of that matrix. Therefore, w(L,b)

can be represented by its projected vector or feature vector v(L,b) in
the space spanned by the K(L,b) eigenvectors,

vðL;bÞ ¼ FðL;bÞT ðwðL;bÞ � w̄ ðL;bÞÞ: ð2Þ

Then, the pdf of f in Eq. (1) is represented by,

p fð Þ ¼ ∏
BL�1

b¼0
cðL;bÞexp �

XKðL;bÞ

j¼1

vðL;bÞ
2

j

2kðL;bÞj

8<
:

9=
;; ð3Þ

where c(L,b) is the normalization coefficient and vj
(L,b) is the jth

element of v(L,b). After obtaining p(f), we can now randomly
generate new vectors v̂(L,b) conforming to the distribution in Eq. (3)
and synthesize the wavelet coefficients of different wavelet bands
using,

ŵðL;bÞ ¼ UðL;bÞv̂ ðL;bÞ þ w̄ ðL;bÞ d ð4Þ

A simulated deformation can therefore be generated by
performing L-level inverse WPT.

This W-PCA model cannot only be used to model statistics of
deformation fields, but also to model other fields like the Jacobian
determinants of deformations. We stress the importance of using
PCAwithin each wavelet band, which is in contrast to the commonly
used independence assumption for wavelet coefficients. In particu-
lar, PCA is known to be the optimal linear expansion, provided that a
good estimate of the covariancematrix is available. By decomposing
deformation fields into different wavelet bands, we can estimate
more efficiently the sample covariancematrices at various bands, for
reasons that were detailed in the Wavelet-PCA (W-PCA) models for
estimating the pdfs of deformation fields and their Jacobian
determinants section. As a result, the W-PCA model can capture
correlations between adjacent spatial locations at a given scale.

Hierarchical MRF regularization
As mentioned in the Wavelet-PCA (W-PCA) models for

estimating the pdfs of deformation fields and their Jacobian
determinants section, if deformations are synthesized directly using
the W-PCA model, some unrealistic discontinuities emanating from
the assumption of independence across wavelet bands may occur. In
order to eliminate such potential discontinuities, a nested MRF
regularization scheme that imposes spatial smoothness at different
scales is applied in conjunction with the inverse WPT. That is, f is
regularized at different scales: at level l, l=L−1,…, 1, 0, its wavelet
coefficients ŵ(l,0) are regularized. (Although for uniformity in the
notation we call these wavelet coefficients, they actually result from
the scaling functions and form a smooth approximation of f at
various scales.)

Denoting the input low-pass coefficients as ŵ (which can be
any of ŵ(l,0),l=L-1, …, 0), the MRF regularization estimates a
“true” wr , by assuming that low-pass wavelet coefficients form an
MRF and ŵ is a degraded observation of wr (ŵ=wr+n, where n is
the disturbance assumed to be zero-mean Gaussian noise with
standard deviation (SD) σN), and by using the maximum a
posteriori (MAP) framework (Gelge et al., 2000; Geman and
Geman, 1984),

wr ¼ argmax
w

fpðwj ŵÞg ¼ argmax
w

fpðŵjwÞpðwÞ=pðŵÞg: ð5Þ

Assuming the priorsp(ŵAw) and p(w) areGaussian distributions,
we have p ŵ jwð Þ~exp � 1

2r2N
tw� ŵt2

� �
and pðwÞ~expf�WðwÞg,

where W wð Þ ¼ 1
2 w� w̄ÞTv�1 w� w̄ð Þ
�

. w̄ and χ refer to the mean and
the covariance matrix ofw, respectively, and the structure of χmeets
the MRF property. Thus wr is solved by minimizing an energy
function Er(w),

Er wð Þ ¼ 1

2r2N
tw� ŵt2 þW wð Þ: ð6Þ

We use a simplified approach similar to Gelge et al. (2000)
and Shen and Ip (1998) to minimize Er(w). First, we estimate
p(w) as a product of all the local (marginal) pdfs across the
location x, i.e., pðwÞ ¼ jx Gðwx; lx; rxÞ, where G(,,) represents
a single Gaussian distribution with mean μx and standard deviation

σx. Then Ψ(w) in Eq. (6) is estimated by W^ wð Þ ¼ Rx
twx � lxt

2

2r2N

( )
,

where lx ¼ 1
jdðxÞjRyadðxÞwy and r2x ¼ 1

jdðxÞj�1RyadðxÞtwy � lxt
2.

δ(x) refers to a neighborhood centered on x but not including x, and
Aδ(x)A is the cardinality of δ(x). Therefore, the regularized wavelet
coefficients wr can be obtained by minimizing Eq. (6) using the
Newton’s method.

Summary of SSD
In summary, the SSD algorithm samples the estimated pdf of

deformations and then iteratively projects the deformation onto
each of the three subspaces:
Step 1. Initialization: randomly sample the W-PCA model of
deformation fields, thereby generating a tentative
deformation.

Step 2. Project the deformation field onto the W-PCA model of
valid deformation fields (this step is superfluous at the first
iteration).

Step 3. Project the Jacobian of the deformation field onto the W-
PCA model of valid Jacobian determinants.

Step 4. Modify the deformation field so that its Jacobian
determinants match the target Jacobians generated in
Step 3, and at the same time, subject to certain smoothness
constraints on the deformation field (refer to Karacali and
Davatzikos, 2004, for details).

Step 5. Apply the nested MRF regularization to impose spatial
smoothness on the deformation at all scales.
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Step 6. Go to step 2 and iterate until convergence, i.e., until the
smoothed deformation field belongs to the subspaces of
valid Jacobians and deformations.
The landmark-constrained SSD

The SSD algorithm presented in the Statistical simulation of
deformations (SSD) section can be used to randomly synthesize an
unlimited number of deformations and respective images. In this
section, we describe how to extend this approach in order to
generate a new deformation using not only the statistical priors on
the deformation fields, but also simultaneously satisfying con-
straints on a number of landmarks for which the deformation field
is known. We call this method landmark-constrained SSD. The
landmark-constrained SSD algorithm does not try to exactly match
the input landmark displacements, and in fact it generates a
deformation field by minimizing the target function, which, on one
hand, must have higher likelihood from the statistical models, and
on the other hand, must match the input landmarks as well as
possible. Compared to other interpolation algorithms, such as the
TPS-based interpolation and the Gaussian kernel-based interpola-
tion, the advantage of the landmark-constrained SSD is that it can
generate both richer and anatomically valid deformations.
Fig. 4. Illustration of atrophy simulation. Panels a and b show the input image and it
determinants. The grey regions give the desired rate of volume change within a sphe
and black means CSF and background whose volume can be changed; panels d and
gives the Jacobian determinants of the simulated deformation field, where Jacobian
within darker grey regions and greater than one within lighter grey or white region
atrophy region, and the surrounding CSF and background region has been enlarge
Particularly, denote the desired displacement vector f ̂ M(d) as the
vector formed by all the known/prescribed displacements on M
landmarks, the purpose of the landmark-constrained SSD is to
estimate the whole deformation f ̂ so that (1) it is subject to the
statistics of deformations, or the likelihood of f ̂ is maximized; and
(2) the distance between the desired displacement vector f M̂

(d) and
the actual displacement vector f ̂M on the M landmarks is
minimized. This can be achieved by finding the feature vectors
v ̂ (L,b), b=0, 1, …, BL−1, by minimizing the following objective
function,

E v̂ ðL; 0Þ; v̂L;1; N v̂L;BL�1
� �

¼ tf^
ðdÞ
M � f^Mt

2 þ k
XBL�1

b¼0

XKðL;bÞ

j¼1

v̂ ðL;bÞ2
j

2kðL;bÞj

; ð7Þ

where the first term ensures that the actual displacements on the M
landmarks are close to the desired ones, and the second term
reflects the statistical constraint of the feature vectors v̂ (L,b), and it
ensures that the resultant deformation field f ̂ has higher likelihood
according to the distribution.

Because WPT, inverse WPT and PCA are all linear transforma-
tions, and because they can be represented by matrix forms, the
actual displacement vector f ̂M on the M landmarks can be directly
s segmented image; panel c shows the prescribed volume change or Jacobian
rical region; white indicates brain regions that do not require volume changes
e show the simulated image with atrophy and the segmented image; panel f
determinants are one within the large grey area, and they are smaller than one
s. It can be seen that shrinkage of the brain tissue is achieved in the desired
d to fill the shrinkage. Also, there are no deformations in other regions.
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expressed as a function of the feature vectors v̂ (L,b). First, according
to inverse WPT, a deformation field f ̂ can be reconstructed by BL

wavelet coefficients ŵ(L,b), b=0, 1, …, BL−1,

f^ ¼
XBL�1

b¼0

W ðL;bÞŵðL;bÞ
; ð8Þ

where W(L,b) represents the inverse WPT matrix for band (L,b).
Because the displacement vector f ̂M on the M landmarks can be
calculated from the corresponding rows of matrix W(L,b), we can
form a new matrix WM

(L,b) by selecting only the corresponding rows
from W(L,b) that make contribution to f M̂. Thus, based on Eqs. (8)
and (4), f ̂M can be expressed as,

f^M ¼
XBL�1

b¼0

WðL;bÞ
M ŵðL;bÞ ¼

XBL�1

b¼0

WðL;bÞ
M ðUðL;bÞv̂ðL;bÞ þ w̄ ðL;bÞÞ

¼
XBL�1

b¼0

ðWðL;bÞ
M ;U v̂

ðL;bÞ þ wðL;bÞ
M ;w̄ Þ;

ð9Þ

where WðL;bÞ
M ;U ¼ WðL;bÞ

M UðL;bÞ and wðL;bÞ
M ;w̄ ¼ WðL;bÞ

M w̄ ðL;bÞ. By sub-
stituting Eq. (9) into Eq. (7), the objective function can be
explicitly expressed as a function of the feature vectors v̂(L,b),b=0,
1, …, BL−1. We can then solve the minimization problem using
the gradient descent method. After obtaining the feature vectors
that minimize Eq. (7), the inverse WPT is used to reconstruct the
deformation field f ̂, and then the iterative mechanism of SSD is
used to regularize f ̂ to obtain the final estimated deformation.
Atrophy and growth simulation

In the previous subsections, we described how to generate
deformation fields that reflect inter-individual variability in brain
structure. In this subsection, we briefly discuss how to generate
intra-individual deformations, which are important when algo-
rithms for tracking growth or atrophy of brain tissue are to be
evaluated. We used an extension of the approach described in
(Karacali and Davatzikos, 2004). Specifically, the desired level of
tissue growth or shrinkage within a pre-specified brain region is
provided to the algorithm. An iterative procedure then tries to
achieve this level of volumetric change, by seeking a deformation
Fig. 5. Experiments showing the complementary property by combining the statistic
vertical axis shows the likelihood of the Jacobian of a synthesized deformation. Pin
fields, whereas blue deformation fields were generated by constraining both the de
this figure legend, the reader is referred to the web version of this article.)
field, whose Jacobian determinants have the appropriate values
everywhere in the brain. For example, if tissue atrophy of 10%
within a specific ROI is desired, then the determinant of the
Jacobian of the underlying deformation field must be equal to 0.9 in
that ROI, and equal to 1 everywhere else. An iterative projection is
used to find a deformation field that not only has a valid gradient of
a deformation field (integrability conditions in Karacali and
Davatzikos, 2004), but also meets the aforementioned target values.
Fig. 4 illustrates an example of the atrophy simulation in detail.

Simulation results

In our first experiment, we partially tested our assumption that
it is important to constrain both the deformation fields and their
Jacobian determinants. We used 68 deformation fields from a
template of the corpus callosum to the corpus callosum of each of
68 individuals, as well as their Jacobian determinants. These
deformations can be considered to be quite accurate representations
of the underlying callosal morphology because they were based on
outlining the callosal boundary and parameterizing piece-wise via
two landmarks placed on its anterior and posterior ends; an elastic
transformation interpolated the deformation in the interior of the
callosum. Moreover, because the corpus callosum midsagittal
section is a single, relatively small, and 2D structure, it is
reasonable to expect that its pdf can be estimated reasonably well
from 68 samples, at least compared to 3D whole-brain deforma-
tions. Accordingly, we constructed PCA models for the deforma-
tion fields and their Jacobians. Then, we simulated a large number
(300 shown in Fig. 5) of deformation fields by randomly sampling
the statistical distribution of deformation fields, thereby generating
“valid” deformation fields, and then calculated the likelihood of the
resultant Jacobian determinants based on their own PCA-estimated
pdfs. Fig. 5 shows the resulting likelihood values of the Jacobian
determinant of these “valid” deformation fields (the solid
horizontal line defines the threshold on the likelihood based on
which “valid” deformation fields were randomly generated). The
results of Fig. 5 indicate that the Jacobians of about 54% of the
randomly generated deformation fields are outside the subspace
defined by the statistical model of Jacobians. In other words, many
deformation fields that are generated by sampling their own
estimated pdf and are “valid” according to this pdf have very
unlikely Jacobian determinants. This shows that further restricting
al models of deformation fields with those of the Jacobian determinants. The
k deformations were generating by sampling only the pdf of the deformation
formation and the Jacobian. (For interpretation of the references to colour in
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the Jacobian determinant is important for generating realistic
deformations. After constraining both the deformation field and the
Jacobian, the simulated deformation fields are all above the
threshold line in Fig. 5, by construction, and thus have both valid
deformations and Jacobians.

Original data

BLSA data
A set of 158 T1-weighted MR brain images of older healthy

adults participating in the Baltimore Longitudinal Study of Aging
(BLSA), as previously reported in (Resnick et al., 2000, 2003),
were registered to an image selected as the template using the
HAMMER registration algorithm (Shen and Davatzikos, 2002).
These deformation fields were used as a starting point in order to
obtain statistics of brain deformations, after the smoothness
constraints and correction of Jacobians were applied to them
(Karacali and Davatzikos, 2004).

MNI data
Forty T1-weighted MR brain images of young healthy adults

from the McConnell Brain Imaging Centre, Montréal Neurological
Institute, McGill University, were used as a second set of images
(Kristi Boesen et al., 2005). Each image has 36 manually generated
landmarks. One image was randomly selected as the template
image and the HAMMER registration algorithm was used to obtain
the deformation fields between two images.

Simulation results

Data set 1: randomly simulated data
Generally, the feature vectors v̂ (L,b), b=0, 1, …, BL−1, are

randomly sampled assuming that they follow a zero-mean
Gaussian distribution described in Eq. (3). Inevitably, many of
the resulting deformation fields are relatively close to the origin,
i.e., to the mean deformation field, hence they are not very
interesting. In order to better visualize and appreciate the properties
of the deformations synthesized by our model, we biased our
random sampling to select values further away from the origin, so
that considerable deformations are generated.

Data set 1 was generated using this sampling method and using
the SSD. It consists of 50 randomly synthesized deformations and
respective images using the statistical models trained from the
Fig. 6. Examples of the randomly simulated images. (a) A cross-section of the temp
images synthesized by randomly sampling the statistical model of the deformation
BLSA data. The template and several representative synthesized
images are shown in Fig. 6. The feature vectors of the simulated
deformations are selected to be around 2 times the SD of their
statistics.

Evaluation of W-PCA. Because W-PCA model is the key
component of SSD to estimate statistics of deformations in SSD,
we used the representation error to evaluate the performance of
the W-PCA by comparing it with the global PCA method using
different number of training samples. In the experiments, 3, 10,
20, 50, 100 and 150 deformations are selected as the training
samples, respectively, and 16 deformations are used as the
testing data (8 testing deformation fields are used for 150
training samples because we have a total number of 158
deformation fields). After training the W-PCA and PCA using
the same training sample set, we project each of the testing
samples onto the space of W-PCA and PCA, respectively, and
then reconstruct the deformation fields using a number of
principal components. The representation error between the
testing deformation field and a reconstructed deformation field is
defined as the mean of the voxel-wise deformation differences.
Smaller representation errors imply that the statistical model
accurately represents not only the training deformation samples,
but other brain deformations, as well. Fig. 7 shows the plots of
average representation error with respect to different numbers of
samples. We can see that W-PCA yields smaller representation
errors as compared with PCA. The performance of PCA and W-
PCA is similar when the number of training samples is less than
10, simply because too few samples are used for capturing the
statistics of high-dimensional data. It can be seen from the
figure that W-PCA does present the testing deformation fields
better than PCA.

Data set 2: simulation using landmark constraints
Given a number of anatomical landmarks for the 40 MNI

images, which were defined in Kristi Boesen et al. (2005), we
also used the landmark-constrained SSD presented in the
Hierarchical MRF regularization section to generate simulated
data sets that conformed to the prior statistics as well as to the
user-defined landmarks. In order to generate simulated deforma-
tions with these data sets, we first randomly selected one of the
40 scans as the template (Fig. 8 shows the template image, as
well as some manually marked landmarks), and then selected one
late image; (b–d) representative examples of cross-sections of the volumetric
s.



Fig. 7. Comparison of the representation errors of PCA andW-PCA by using
different number of training samples.
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of the rest 39 images as the test image. The statistical models of
deformation fields and Jacobian determinants are then constructed
by using the deformation fields that register the template image
with the rest 38 subject images. Then, we used these statistical
models, together with the 36 manual landmarks defined on the
template image and the test image, respectively, to generate a new
deformation using the landmark-constrained SSD. Fig. 9 shows
the representative data sets by setting different subject images as
the test image. It can be seen from the examples that the
synthesized images using the landmark-constrained SSD are more
realistic than those generated using other interpolation methods.
This is because that the landmark-constrained SSD utilizes the
statistical models of the deformation fields, and thus it picks up
the one from the statistics that match the landmarks best. As a
result, it comes up with more realistic deformation fields and
images. On the other hand, the two interpolation methods used in
conjunction with these landmarks (TPS and Gaussian kernel)
generated deformation fields that were not only limited in
flexibility, due to the limited number of landmarks but were often
quite unrealistic (Figs. 9c, d). Notable is the similarity between
the second row in Fig 9, which shows the warped template
images using the landmark-constrained SSD, and the first row,
which shows the actual images of the subjects from which the
landmarks were derived, even though only 36 landmarks were
defined for the entire brain.

Data set 3 and Data set 4: atrophy/growth simulation
We used the model of tissue atrophy/growth simulation that was

briefly described in the Atrophy and growth simulation section to
generate two sets of data, as described next.
Fig. 8. The template image, which was randomly chosen from the 40 MNI images.
images show a representative subset of the 36 landmarks.
Data set 3. For each image of the 40 MNI data, we
simulated 7% atrophy and 7% growth within spherical regions
centered on three manually selected locations. Fig. 10 gives
three examples of the simulated images. The left column
shows the image with three spherical regions at different
locations of the brain, within which the atrophy and growth
will be simulated. The middle column and the right column
show the simulated atrophy and growth images, respectively.
It can be seen that atrophy and growth are achieved only for
the brain tissues within the selected spherical region, as
expected.

Because the center points of the spherical regions are
manually selected on each subject image, and the anatomical
structures of the selected regions are different across different
subjects, the atrophy/growth simulator does not necessarily
achieve exactly the pre-specified 7% level. In fact, the
simulation iteratively solves an optimization problem that can
converge to a local minimum, and the brain tissue regions to be
shrunk or grown are different for different subjects and different
locations. Fig. 11 illustrates the average and SD of actual
volume changes of the simulated atrophy and growth across the
40 images. We can see from the results that the actual atrophy
and growth rates get quite close for different subjects and
different locations.

Data set 4. In Data set 3, we simulated atrophy and growth
on real subject images. In this data set, we simulate atrophy
and growth on the simulated images of Data set 1 (50 images).
Similar to Data set 3, for each image, we simulated 7%
atrophy and growth of the brain tissues within spherical
regions centered on three selected locations. Because simulated
images are used and their deformations onto the template
image are known, the three locations of atrophy and growth
are selected only from the template image, and their correspond-
ing locations in all other simulated images are automatically
determined. The reason why we performed these additional
simulations is that we have a relatively consistent placement of
the sphere of atrophy/growth across different simulated images
because they are simulated brain images emanating from the
same template; whereas in Data set 3 the regions of simulated
atrophy and growth were selected manually in each image,
which could potentially involve some human error. Moreover, as
many as desired brain images can be synthesized in this way,
whereas Data set 3 can only generate a limited number of
brains.
The left image shows slice no. 79 of the template image, and the remaining



Fig. 9. Three representative images from the 40 MNI data sets, along with three different sets of simulated images (warped template). It can be seen from the
examples that the synthesized images using the landmark-constrained SSD are not only more realistic than those generated using other interpolation methods, but
also quite close to the actual images from which the 36 constraining landmarks were derived.
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Fig. 12 gives two examples of the simulated images, and
Fig. 13 illustrates the average and SD of volume changes of
the simulated atrophy and growth across the 50 simulated
images. Comparing Fig. 13 with Fig. 11, we can see that the
actual volume changes of the simulated atrophy and growth
for Data set 4 are more consistent than those in Data set 3



Fig. 11. Average and SD values of the actual volume changes measured from
the simulated atrophy and growth of the 40 MNI images.
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across different images, i.e., Fig. 13 has relatively small SD
values.

Summary and conclusion

We have presented methods for intra- and inter-individual
brain deformation simulation, which can be used in the future for
systematic and extensive evaluation of registration algorithms.
The statistical simulation of deformation (SSD) technique is
applied in order to capture the statistics of deformations and to
simulate new deformations and respective images. In SSD, a
Wavelet–Packet Transform (WPT) decomposition of the training
deformations, in conjunction with a Markov random field (MRF)
spatial regularization, is used to capture both coarse and fine
characteristics of the training deformations in a statistical
fashion. Simulated deformations are constructed by randomly
sampling the resultant statistical distribution. In addition, when
landmark points are available, the landmark-constrained SSD is
applied in order to utilize both landmark and statistical
Fig. 10. Examples of simulated atrophy and growthwithin spherical regions centered
spherical region illustrated by the red circles. (For interpretation of the references to co
information. Finally, the proposed deformation simulation
approach is coupled with a model for generating tissue atrophy
or growth.
on three selected locations. Tissue atrophy and growth are simulated within the
lour in this figure legend, the reader is referred to theweb version of this article.)



Fig. 12. Examples of the simulated atrophy and growth of the template image and a simulated image.
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A main assumption in the W-PCA method is that a number of
training samples, i.e., of example deformation fields, are available
for pdf estimation purposes. For the purposes of describing our
simulation method herein we used a specific deformable
registration method, which biases the estimated pdf towards the
deformations that this method produces. Our rationale has been
that, in future studies aiming at validation of different warping
methods, a set of well-labeled images can be first constructed and
used to determine the training deformations in a rather unbiased
way. This is because if one constrains the warping adequately via
landmarks, curves or regions, highly accurate deformations can
be obtained with minimal bias towards the warping method.
Secondly, our approach to simulating deformations can be used in
conjunction with different warping methods, each time using one
of them as ground truth and testing the others. A warping method
Fig. 13. Average and SD values of the actual volume changes of the
simulated atrophy and growth of the 50 simulated images.
that consistently outperforms others, regardless of the training
process, is likely to be a more accurate method.

The assumption of independence between different bands, after
the WPT, is only an approximation. Although our method
significantly expands upon the common assumption in many
signal-processing paradigms of independence of different wavelet
coefficients, by grouping together coefficients in each band and
performing PCA, it ignores possible correlations across different
bands. Future work in this direction will aim at grouping different
wavelet coefficients into groups that have minimal statistical
dependence on each other, and which might span across different
frequency bands.

The framework of iterative projections onto different sub-
spaces (Fig. 1) can be extended to include additional subspaces
to the ones we currently consider. More generally seen, this
framework is based on the fact that in situations in which very
accurate estimation of a pdf is not directly feasible, the pdf can
be estimated by evaluating various (hopefully complementary)
aspects of it and finding the solution that satisfies all. Examples
of potential extensions include prior expert knowledge defining
regions that are expected, from an anatomical perspective, to be
correlated to each other, where the joint marginal distribution of
these regions can be estimated. The respective subspace would
then include all the pdfs of anatomical structures, whose
marginal distributions relative to the expert-defined anatomical
structures agree with what was estimated from the training
samples.

In this paper, we generated several data sets of simulated
deformations for future use in validation studies of automated
segmentation and deformable registration methods. The software
and data sets are available for distribution online at http://www.rad.
upenn.edu/sbia/.
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