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Abstract

In this paper, we present a set of wavelet moment invariants, together with a discriminative feature selection method,
for the classification of seemingly similar objects with subtle differences. These invariant features are selected automati-
cally based on the discrimination measures defined for the invariant features. Using a minimum-distance classifier, our
wavelet moment invariants achieved the highest classification rate for all four different sets tested, compared with
Zernike’s moment invariants and Li’s moment invariants. For a test set consisting of 26 upper cased English letters,
wavelet moment invariants could obtain 100% classification rate when applied to 26]30 randomly generated noisy and
scaled letters, whereas Zernike’s moment invariants and Li’s moment invariants obtained only 98.7 and 75.3%,
respectively. The theoretical and experimental analyses in this paper prove that the proposed method has the ability to
classify many types of image objects, and is particularly suitable for classifying seemingly similar objects with subtle
differences. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of moment invariants as features for identifica-
tion and inspection of 2D shape has received much atten-
tion [1]. Since Hu [2] presented the first paper on the use
of image moments for 2D pattern recognition, moment-
based techniques have found wide applications [3, 4].
Resis [5] revised some of the theoretical proofs in [2]. By
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comparing the relationship between the theory of mo-
ment invariants and the Fourier—Mellin transformation,
Li [6] not only re-formulated Hu’s seven moment invari-
ants but also introduced some new high-order moment
invariants. However, Hu’s moment invariants have some
drawbacks. One drawback is their dramatic increase in
complexity with increasing order. The second is that they
are not derived from a family of orthogonal functions,
and so contain much redundant information about an
object’s shape.

Teague [7] suggested the use of orthogonal moments
based on the theory of orthogonal polynomials to over-
come the problems associated with the regular moments.
Various types of image moments, including geometri-
cal moments, Legendre moments, Zernike moments,
pseudo-Zernike moments, Fourier—Mellin moments, and



Fig. 1. The instability of Hu’s first two moments (/
1
, /

2
) for various shapes of ‘‘1’’ and ‘‘D’’ (Since two feature values of the two shapes

overlap significantly, it is impossible to discriminate the two shapes based on only these two features.)

complex moments, have been evaluated in term of noise
sensitivity, information redundancy, and capability of
image description [8]. The result is that Zernike mo-
ments have the best overall performance. Khotanzad and
Hong [9] have also compared Hu’s moment invariants
and the magnitudes of Zernike moments in rotational
invariant recognition of characters and shapes. Their
results clearly show that Zernike moments are superior
to Hu’s moments. Accordingly, the orthogonal moment
features have been used for the recognition of hand-
writing Arabic numerals [10].

The geometrical moments of an image are integrals of
the image function over space, and the image can be
uniquely determined by its geometrical moments of all
orders. Low-order moments are relatively more stable
than high-order moments. However, low-order moments
can be used to differentiate between images of real objects
only if their shapes are significantly different. Since these
moments are designed to capture global information
about the image, they are not suitable for classifying
similar objects when corrupted by a significant amount
of random noise. In fact, the geometrical moments are
sensitive to digitization error, minor shape deformations,
camera non-linearity, and non-ideal position of camera.
We may understand this conclusion by observing Fig. 1
which demonstrates the unstable property of Hu’s mo-
ment invariants for various shapes of ‘‘1’’ and ‘‘D’’. In
Fig. 1, only two second-order moment invariant features
(/

1
, /

2
) are given, as they are regarded as the best dis-

criminative features [11]. Attempting to overcome this
problem, Sluzek [11] presented a method of using the
second-order moment invariants to create more posi-
tion-invariant descriptors and to improve the resolution
of these descriptors. First, the object of interest was
partially occluded by circles located in its center. Then,

this object is represented by a family of different shapes,
and the moment invariants of order 2 of all these shapes
are regarded as shape descriptors of the object. We will
show in Section 3 that the applicability of this method is
limited.

In a shape recognition system, typically a set of numer-
ical features are extracted from an image. The selection of
discriminative features is a crucial step in the process,
since the next stage sees only these features and acts upon
them. In general, discriminative features must satisfy
small intraclass variance and large interclass separation
[12].

The main contributions of this paper are a set of
wavelet moment invariants presented for capturing
global and local information from the objects of interest,
and a method of selecting discriminative features based
on a set of discrimination measures defined for the fea-
tures. Even for two seemingly similar but different ob-
jects, such as ‘‘1’’ and ‘‘D’’, our wavelet moments
invariants still succeed in extracting discriminative fea-
tures for separating these two classes of objects, whereas,
Li’s moment invariants and Zernike’s moment invariants
failed. Furthermore, a minimum-distance classifier is ap-
plied to four test sets, the set consisting of ‘‘1’’ and ‘‘D’’
(Fig. 4), the set consisting of two artificially generated
objects (Fig. 8), the set consisting of 26 upper cased
English letters (Fig. 12), and the set consisting of two
similar wrenches (Fig. 15). We compared performances of
the classifications with respect to different number of
wavelet moment invariants, Zernike’s moment invariants
and Li’s moment invariants (extended from Hu’s moment
invariants) [6]. For example, for the first test set contain-
ing ‘‘1’’ and ‘‘D’’, 100% recognition rate was obtained
using our method on the basis of only one feature.
However, for Zernike’s moment invariants, the highest
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recognition rate is 98% on the basis of at least 11 fea-
tures. While for Li’s moment invariants, the highest rec-
ognition rate is 83% when 29 features are used.

We will give a generalized expression for rotation
invariant feature extraction in the following section, in
order to show that wavelet moment invariants have
much superiority in terms of discrimination powers and
their low sensitivity to noise. In Section 3, we will apply
wavelet transforms to feature extraction, and a set of
wavelet moment invariants will also be given there. In
Section 4, the discriminative feature selection method will
be described. Section 5 presents some experimental re-
sults which show that wavelet moment invariants are
better than Zernike’s moment invariants and Li’s mo-
ment invariants for object discrimination. This paper
concludes in Section 6.

2. Generalized expression for obtaining moment-based
rotation invariant feature

In this section, we will give a generalized expression for
obtaining the rotation invariant features. After compar-
ing several well-known moments which are included
in the generalized expression, we will show that wavelet
moment invariants have much superiority over other
moments. In this paper, translation invariant and scaling
invariant are achieved by using a normalization based
on regular moments. Rotation invariant is achieved by
extracting wavelet moment invariants, Zernike’s moment
invariants, or Li’s moment invariants, since they are
intrinsically rotation-invariant.

2.1. Translation and scaling normalization

Let f (x, y) represent a 2-D binary image object in the
(x, y)-coordinate, and its corresponding form in the polar
coordinate be f (r,h). The relationship between f (x, y)
and f (r, h) is given as follows:

x"r cos(h),

y"r sin(h).

In a shape recognition system, the objects of interest are
often represented by a set of numerical features with a
goal to remove redundancy in the data and to reduce
its dimensions. Moreover, the extracted features are ex-
pected to be invariant under translation, scaling and
rotation to suit for different viewing directions. Transla-
tion invariant and scaling invariant can be achieved
using the regular moments as follows.

The definition for a regular moment m
pq

is

m
pq
"P Pxpyq f (x, y) dxdy.

Since the center of the shape is invariant to translation,
rotation and scaling, the method of solving the transla-
tion problem is to locate the centroid of the shape. The
coordinates of the center of the shape are

X
0
"

m
10

m
00

, ½
0
"

m
01

m
00

In Hu’s moments, scaling invariant was obtained by
normalizing the central moments by m

00
. To simplify

discussion, we extract the scaling factor based on Hu’s
idea. The scaling factor of the present object size, com-
pared with the expected size, is

a"S
m

00
AREA

,

where AREA is a constant, corresponding to the ex-
pected size of the object. This way, we can obtain the
translation and scaling normalized shape by changing
the coordinates according to the following transforma-
tion:

A
x

yBPA
(x!X

0
)/a

(y!½
0
)/aB .

Notice that if f (x, y) is a binary image object free of noise,
then the object area is equal to m

00
and hence a will be

equal to 1. For the rest of this paper, we let f (x, y) and
f (r, h) represent the translation and scaling normalized
image object.

2.2. Generalized expression

To get rotation invariant moments, typically the fol-
lowing generalized expression is used:

F
pq
"PP f (r, h)g

p
(r)e+qhr drdh, (1)

where F
pq

is the pq-order moment, g
p
(r) is a function of

radial variable r, and p and q are integer parameters. It is
easy to prove that the value of EF

pq
E is rotation invariant

and the combined moments, such as F
p1q

)F*
p2q

, are also

rotation invariant, where ExE"Jx )x* and symbol
* denotes conjugate of complex number. The proof of the
rotation invariant property of EF

pq
E can be briefly given

as follows. If an image object f (r, h) is rotated by an angle
of b, its corresponding moment will become

FRotated
pq

"F
pq

e+qb. Since EFRotated
pq

E"JFRotated
pq

(FRotated
pq

)*"
EF

pq
E, the rotation invariant property of EF

pq
E is thus

proven. The other combined moments can be obtained
using methods described in [6, 10], such as F

p1q
) ((F

p21
)q)*.

Notice that the definition of the combined moments
expressed in terms of F

p1q
)F*

p2q
has more advantages

than that of the combined moments in [6,10], i.e.
F
p1q

) ((F
p21

)q)*. One advantage is that the magnitudes of
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all the combined moments F
p1q

)F*
p2q

are comparable,
whereas the magnitudes of all the combined moments
F
p1q

) ((F
p21

)q)* may not be comparable since the magni-
tude of F

p1q
) ((F

p21
)q)* changes with q. Another advantage

is that, for the rotationally symmetric shapes with fold
number larger than 1, the values of all the combined
moments F

p1q
) ((F

p21
)q)* are zeroes, whereas the values of

all the combined moments F
p1q

)F*
p2q

may be non-zeroes
for any q larger than the fold number [15].

In order to reduce the problem of feature extraction
from a 2D image object to that from a 1D sequence,
expression (1) is rewritten as follows:

F
pq
"PS

q
(r) ) g

p
(r)r dr (2)

where S
q
(r)": f (r, h)e+qhdh. Note that S

q
(r) is now a 1D

sequence of variable r. It is important to note from Eq. (2)
that if g

p
(r) is defined on the whole domain of variable r,

then F
pq

is a global feature, on the other hand, if the
function of g

p
(r) is locally defined, then F

pq
may be seen as

a local feature.
Based on expression (2), we can easily show that the

original definitions for Hu’s moments, Li’s moments and
Zernike moments are special cases of expression (1) and
the extracted features are global features.

(i) When setting g
p
(r)"rp and some constraints on

p and q, then Hu’s moments [2] and Li’s moments
[6] can be obtained.

(ii) When setting g
p
(r) to be the following orthogonal

polynomials,

gZernike
p

(r)"
(p~Dq D)@2

+
s/0

(!1)s

]
(p!s)!

s! A
p#Dq D

2
!sB !A

p!Dq D
2

!sB !

rp@2~s

and some constraints on p and q, then we can obtain
Zernike’s moment invariants EFZernike

pq
E, which are

the magnitude of Zernike moments. That is

EFZernike
pq

E"KK P S
q
(r) ) gZernike

p
(r)r dr KK (3)

Furthermore, Hu’s moment invariants, Li’s moment in-
variants and Zernike’s moment invariants are calculated
on the global image space. Fig. 1 indicates that the values
of Hu’s moment invariants are sensitive to noise. This
observation is also true for Li’s moment invariants
and Zernike’s moment invariants. Thus it is not easy to
correctly classify similar image objects with subtle
differences based on such global moment invariants. We
further elaborate this point as follows. Suppose we have

two similar objects and their corresponding moments are
EF

pq
E and EF @

pq
E, respectively. Since they are similar,

then in the absence of noise they may be related as:

EF
pq

E"EF @
pq

E#*
pq

,

where *
pq

is a small deviation. If there exists any noise
coming from digitization or randomly-added Gaussian
noise, then their relationship may include the noise term:

EF
pq

E"EF @
pq

E#*
pq
#noise

pq
.

Since the two images are similar, *
pq

is always very small
for Hu’s moment invariants, Li’s moment invariants and
Zernike’s moment invariants. However, the magnitude of
noise

pq
, which is integrated from the entire image space,

may be greater than the magnitude of *
pq

. Consequently,
the values of EF

pq
E and EF @

pq
E may overlap and oscillate

from sample to sample, as shown in Fig. 1.
If g

p
(r) is a locally defined function of the radial vari-

able, then the features, EF
pq

E and EF @
pq

E, will be extracted
from a local area of the image space and the difference,
*
pq

, between the corresponding features of different
shapes will be larger. Similarly, the noise effect is also
computed from the local area, the value of noise

pq
will be

smaller. It is likely that the values of EF
pq

E and EF @
pq

E
will not be overlapping, such as Figs. 6a1 and b1. This is
the key idea that underlies the development presented in
this paper and that leads us to develop a rank order
procedure of extracting suitable discriminative features
based on the wavelet transform.

3. Wavelet moment invariants

Sluzek [11] described a prototype object by means of
a family of shapes, which are created through occluding
the object by circles (of different radius) located at the
object’s center. The Hu’s moment invariants of such
shapes, which are functions of the radius of an occluding
circle, were used as features for quality detection of indus-
trial parts. Fig. 2 illustrates the effect of occluding the
object by a circle, where ¹h (r, c) is an occluding function
and c represents the radius of the occluding circle. If the
function g

p
(r) is defined as rp )¹h(r, c) and the relation-

ship between p and q is constrained as in Hu’s moments,
then the combined features are identical to the features
suggested by Sluzek [11]. However, ¹h(r, c) is a step
function, which is not a localized window-liked function.
It helps to extract the object information in the region of
r'c, but not within r(c. Hence, this method may not
be suitable for all types of image objects.

In this section, we will introduce the application of
wavelet basis functions for feature extraction. Wavelet
transform is a method for accomplishing localized analy-
sis [13, 14, 16—18]. Different from the traditional short-
time Fourier transform, wavelet transform is capable to
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Fig. 2. The meaning for occluding the object by circles.

provide both time and frequency localization. The char-
acteristic of wavelet transform is particularly suited to
extracting local discriminative features.

In this paper, we treat Mg
p
(r)N in Eq. (2) as wavelet basis

functions, and consider the family

ta,b (r)"
1

Ja
tA

r!b

a B ,

where a (a3R
`
) is a dilation parameter and b (b3R) is

a shifting parameter. From now on, the basis functions
Mg

p
(r)N are replaced by wavelet basis functions Mta,b (r)N.

We consider using the cubic B-spline wavelets [17,18]
which are optimally localized in space-frequency and are
close to the forms of Li’s (or Zernike’s) polynomial mo-
ments. The mother wavelet t(r) of the cubic B-spline in
Gaussian approximation form [17] is

t(r)"
4an`1

J2n(n#1)
p
w
cos(2n f

0
(2r!1))

]exp A!
(2r!1)2

2p2
w
(n#1)B ,

where n"3, a"0.697066, f
0
"0.409177 and p2

w
"

0.561145. This function is plotted in Fig. 3. The values of
parameters a and b are usually discrete. The discretiz-
ation of the dilation parameter is done by choosing
a"am

0
, where m is an integer and a

0
'1 or a

0
(1. b is

discretized by taking the integer (positive and negative)
multiples of b

0
am
0
, where b

0
'0 is appropriately chosen

so that t(r!b)/a) ‘‘covers’’ the whole domain at different
values of m. Thus,

a"am
0
, m is integer,

b"nb
0
am
0
, n is integer.

Since the image size is always restricted in a domain
Mr)1N, let both parameters a

0
and b

0
be set to 0.5, and

the domains for m and n be restricted as follows:

G
a"0.5m,

b"0.5 ) n ) 0.5m,

m"0, 1, 2, 3,

n"0, 1,2 , 2m`1.

Fig. 3. The cubic B-spline mother wavelets.

Then the wavelet defined along a radial axis in any
orientation is denoted by

t
m,n

(r)"2m@2t (2mr!0.5n)

Let this function sweep across in all angular rotations in
the moment computation, it will be able to extract either
global or local information depending on the values of
m and n. Notice that setting b

0
to 0.5 leads to oversamp-

ling. However, we will select wavelet-based features for
object classification, not for image reconstruction; Any
redundant and sensitive features can be screened out
after feature selection.

Now let us introduce a set of wavelet moment invari-
ants for classifying objects, they are defined as follows:

EFwavelet
m,n,q

E"KK P S
q
(r) )t

m,n
(r)r dr KK , (4)

where t
m,n

(r) replaces g
p
(r) in (2), m"0, 1, 2, 3,

n"0, 1,2 , 2m`1, and q"0, 1, 2, 3. The above defini-
tion indicates that Fwavelet

m,n,q
is actually a wavelet transform

of S
q
(r)r. Since Fwavelet

m,n,q
is close to the generalization of the

first moment of S
q
(r), Fwavelet

m,n,q
can also be regarded as the

first moment of S
q
(r) at the mth scale level with shift index

n. The last variable r in S
q
(r)r is derived from the trans-

formation from the xy-coordinate to the polar coordinate
(r, h). For a fixed r, S

q
(r)": f (r, h) e+qhdh represents the

qth frequency feature of the image object f (r, h) in the
phase domain M0)h)2nN. So S

q
(r)r expresses the fea-

ture distribution of the object f (r, h) in the radial domain
M0)r)1N. Furthermore, using different scale index
m and shift index n, we ensure that the wavelets Mt

m,n
(r)N

cover the whole radial domain M0)r)1N and thus the
wavelet moment invariants, EFwavelet

m,n,q
E, can provide fea-

tures of the object f (r, h) at different scale levels. Notice
that wavelet moment invariants are invariant to rotation
of object. For its proof, please refer to the proof given for
the generalized rotation invariant expression in the be-
ginning of Section 2.2.

We will compare the quality of these wavelet moment
invariants with that of Zernike’s moment invariants and
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Fig. 4. Some training images of ‘‘1’’ and ‘‘D’’. (a) for ‘‘1’’ and (b) for ‘‘D’’, while (c) and (d) are the translation and scaling normalized versions.

also that of Li’s moment invariants. Zernike’s moment
invariants, EFZernike

pq
E, have been given in Eq. (3). Here, we

constrain the orders p and q such that: p)11, (p!q)
even, 0)q)p. Since the higher-order moments are too
sensitive to noise, they cannot be used as the dis-
criminative features of an object. The total number of
Zernike’s moment invariants that we used is 42. Li’s
moment invariants, containing Hu’s seven moment in-
variants, are expressed as M

p
[6]. We also used 42 of

them MM
p
, p"1, 2,2 , 42N in this paper for comparison.

4. Discriminative feature selection and classification

It is well known that the selection of discriminative
features is a crucial step in any shape recognition system,
since the next stage sees only these features and acts upon
them. Invariant features which capture the global charac-
teristics of an object are often sensitive to noise, thus it is
important to design a rank order procedure of selecting
discriminative features which have small intraclass vari-
ance and large interclass separation. Many feature selec-
tion methods have been developed [20], and most of the
search methods except for the Branch and Bound algo-
rithm are suboptimal. The Branch and Bound algorithm
implicitly searches all of the combinations and guaran-
tees a globally optimum feature set. In practical ap-
plications, one tends to employ more computationally
efficient methods which are suboptimal. The suboptimal
methods include Sequential Forward Selection (SFS),
Generalized Sequential Forward Selection (GSFS),
Sequential Backward Selection (SBS), and Generalized
Sequential Backward Selection (GSBS). The feature se-
lection method used in this paper is also suboptimal. We
use standard variance-based feature discrimination tech-
niques, such as between-to within-class variance ratio
[18], for defining the discrimination measures of features.
In this way, we rank features according to their discrim-
ination measures and select the best feature set for object
classification. It should be pointed out that the feature
selection criterion is dependent on the classification

method. Thus, the choice of between-to within-class vari-
ance ratio statistics would be better suited to the use of
the minimum-distance classifier discussed in Section 4.2.
In the following, we present a rank order procedure for
selecting discriminative features from the set of wavelet
moment invariants MEFwavelet

m,n,q
EN. The feature selection

procedures for Li’s moment invariants and Zernike’s
moment invariants used in our experiments are similar to
the procedure suggested here.

4.1. An automatic discriminative feature selection
algorithm

The mean of each invariant feature EFwavelet
m,n,q

E for shape
S
i
, m(S

i
, EFwavelet

m,n,q
E ), and the standard deviation p(S

i
,

EFwavelet
m,n,q

E ) can be estimated from a sufficient number of
samples of the shape S

i
. In our experiments, the number

of training samples, N¹S, used for each shape S
i

is
N¹S"30. Some examples of the training samples for
the shape ‘‘D’’ are shown in Fig. 4a, and those of the shape
‘‘1’’ are shown in Fig. 4b. Table 1 gives means and
standard deviations of six wavelet moment invariants for
shapes ‘‘1’’ and ‘‘D’’.

The between-to within-class variance ratio, or its in-
verse, may be used to describe the discrimination degree
of a certain feature for discriminating two classes. We
specifically use the following discrimination measure
which evaluates the effectiveness of using the feature
EFwavelet

m,n,q
E to differentiate between two shapes S

i
and S

j
:

Q (EFwavelet
m,n,q

E, S
i
, S

j
)

"

g(p(S
i
, EFwavelet

m,n,q
E)#p (S

j
, EFwavelet

m,n,q
E))

Dm (S
i
, EFwavelet

m,n,q
E)!m(S

j
, EFwavelet

m,n,q
E) D

,

where g"3.0. This measure is similar to the inverse of
the square root of the between-to within-class variance
ratio. It is a probabilistic separability measure, if we
consider the feature distribution as a Gaussian function.
The reason for choosing g to be 3.0 is based on the
property that the probability of a class conditional Gaus-
sian variable distributed in the interval [m!3.0*
p, m#3.0* p] is about 99.8%. Thus, the smaller the
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Table 1
Means and standard deviations of six wavelet moment invariants for shapes ‘‘1’’ and ‘‘D’’

‘‘1’’ ‘‘D’’

Features Mean Standard deviation Mean Standard deviation Q(‘‘1’’, ‘‘D’’)

EFwavelet
0,0,0

E 88.9 2.4 72.8 3.5 1.1
EFwavelet

0,1,0
E 44.9 2.6 30.0 3.4 1.2

EFwavelet
0,2,0

E 4.2 1.3 10.6 1.6 1.3
EFwavelet

1,0,0
E 17.5 3.1 32.5 2.8 1.2

EFwavelet
1,1,0

E 21.1 2.6 8.7 3.3 1.4
EFwavelet

1,2,0
E 19.5 2.9 24.2 2.4 3.4

value of the discrimination measure Q (EFwavelet
m,n,q

E, S
i
, S

j
)

is, the better the feature EFwavelet
m,n,q

E can resolve shapes
S
i
and S

j
. If Q (EFwavelet

m,n,q
E, S

i
, S

j
) is smaller than 1, then

the feature EFwavelet
m,n,q

E is guaranteed to be able to differen-
tiate between shapes S

i
and S

j
. Table 1 also shows values

of Q (EFwavelet
m,n,q

E, S
i
, S

j
) for the six wavelet moment invari-

ants. Five of which are quite close to 1. It has been noted
that there exist some wavelet moment invariants having
discriminative measures Q(EFwavelet

m,n,q
E, ‘‘1’’, ‘‘D’’) smaller

than 1; however none of Li’s moment invariants or Zer-
nike’s moment invariants has a discriminative measure
smaller than 1.

Suppose that there are N
class

classes in the set of objects
to be discriminated. In order to select discriminative
features, we calculate the discrimination measures for
each feature EFwavelet

m,n,q
E and select a set MQ(EFwavelet

m,n,q
E,

S
i
, S

j
), 1)i, j)N

class
N whose values are smaller than 1.

The discrimination number, NDD(EFwavelet
m,n,q

E) which re-
flects the feature’s capability of providing pairwise class
separation, is defined as follows:

NDD(EFwavelet
m,n,q

E)"
Nclass

+
i/1

Nclass

+
j/1,jEi

w (Q(EFwavelet
m,n,q

E , S
i
, S

j
)),

where w(x)"1 if x(1, otherwise w (x)"0. For each
feature EFwavelet

m,n,q
E , we define the worst overall dis-

criminative measure, that is,

Qworst(EFwavelet
m,n,q

E )" max
1xi,jxNclass, iEj

MQ(EFwavelet
m,n,q

E, S
i
, S

j
)

)w(Q(EFwavelet
m,n,q

E, S
i
, S

j
))N

from the set MQ(EFwavelet
m,n,q

E, S
i
, S

j
)(1, 1)i, j)N

class
and

iOjN. Using these measures, we propose a procedure for
selecting discriminative features as follows:

Discriminative feature selection algorithm:

(1) According to the discrimination number
NDD(EFwavelet

m,n,q
E ) and the worst overall dis-

criminative measure Qworst(EFwavelet
m,n,q

E ), rank all
wavelet moment invariants EFwavelet

m,n,q
E for m"0, 1,

2, 3, n"0, 1,2, 2m`1 and q"0, 1, 2, 3. The feature

with the largest discrimination number is ranked
first. For features with the same discrimination num-
ber, we rank them in the ascending order according
to their worst overall discriminative measures.

(2) Select the top N
feature

features from the ordered fea-
ture list as discriminative features.

For shapes ‘‘1’’ and ‘‘D’’ shown in Fig. 4, the selected first
and second best wavelet moment invariants are
EFwavelet

1,2,1
E and EFwavelet

1,2,2
E respectively. Notice that these

two wavelet moment invariants come from the same
wavelet t

1,2
(r) at scale level 1 with shift index 2, which is

shown in Fig. 5. Since the radial distance is in the domain
M0)r)1N, only the part of t

1,2
(r) in this domain is

displayed in Fig. 5. It is important to indicate that the
maxima of this wavelet is located near an area where the
difference of two shapes occur. For the training samples
of the shapes ‘‘1’’ and ‘‘D’’, their corresponding invariant
moments are shown in Figs. 6a1 and b1. The horizontal
axis denotes the labeling of the training samples, while
the vertical axis denotes the feature values. The solid
curve represents the feature values for the shape ‘‘1’’,
while the dotted curve represents the feature values for
the shape ‘‘D’’.

For comparison purpose, we applied the same feature
selection method to Li’s moment invariants of the shapes

Fig. 5. The wavelet t
1,2

(y)"wave(1, 2) involved in the selected
best two discriminating wavelet moment invariants for shapes
‘‘1’’ and ‘‘D’’.
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Fig. 6. Variations of values of the first two features with the samples of shapes ‘‘1’’ and ‘‘D’’: (a1) and (b1) are respectively for the two
selected wavelet moment invariants, (a2) and (b2) for the two selected Li’s moment invariants, and (a3) and (b3) for the two selected
Zernike’s moment invariants.

‘‘1’’ and ‘‘D’’ and obtained the first and second best fea-
tures as M

5
and M

8
respectively. Their corresponding

values of 30 training samples of each shape are given in
Figs. 6a2 and b2, respectively. Similarly, for Zernike’s
moment invariants, the selected first and second best
features are EFZernike

7,5
E and EFZernike

9,5
E, and their corres-

ponding values of the training samples are shown in
Figs. 6a3 and b3. From all the data shown in Fig. 6, it is
clear that the values of the wavelet moment invariants for
the two different shapes are well separated, while the
values of Li’s moment invariants (or Zernike’s moment
invariants) overlap to a certain extent for these two
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Fig. 7. Scattergrams of shapes ‘‘1’’ and ‘‘D’’ in the selected 2D feature spaces: (a) of the two best wavelet moment invariants, (b) of the two
best Li’s moment invariants, and (c) of the two best Zernike’s moment invariants; While (d) shows classification rate of 100 testing
samples varies with the number of selected features.

shapes. This is demonstrated more clearly by scatter-
grams of the two shapes in the 2D feature space as shown
in Fig. 7. Only the scattergrams of the two shapes in the
feature plane of the wavelet moment invariants are well
separated, the scattergrams of the two shapes in other
feature planes (of either Li’s moment invariants or Zer-
nike’s moment invariants) are overlapping. In summary,
Figs. 6 and 7 demonstrate that the wavelet moment
invariants are better features to use for discriminating

shapes that are seemingly similar, and that our feature
selection procedure automatically selects these dis-
criminative features.

4.2. Minimum distance classification

We will evaluate the selected discriminative fea-
tures with the minimum-distance classification rule in all
the experiments presented in this paper. We compare
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classification rates based on features derived from the
selected wavelet moment invariants, the selected Li’s
moment invariants, and the selected Zernike’s moment
invariants. Let MFselected

k
Dk"1,2,2, N

feature
N denote the

selected features via our feature selection method. Let the
number of the selected features be N

feature
, the number of

object classes be N
class

, and the number of the training
samples for every class be N

sample
. Furthermore, let

Data(F selected
k

, Sample (i)
j

) denote the kth selected feature of
the jth training sample of the ith class. Then for each class
of samples we can obtain the sample average, Average (i)

k
,

and sample variance, »ariance(i)
k
, of every selected fea-

ture. That is

Average (i)
k
"

1

N
sample

Nsample

+
j/1

Data (Fselected
k

, Sample (i)
j

),

»ariance(i)
k
"

1

N
sample

Nsample

+
j/1

(Data (F selected
k

, Sample (i)
j

)

!Average (i)
k
))2.

Each class is then represented by a sample mean feature
vector [Average(i)

k
; k"1, 2,2,N

feature
]. When an un-

known object with feature vector X"[X
1
, X

2
,2,X

Nfeature
]

is to be classified, the nearest neighbor of X is sought
among all N

class
sample mean feature vectors and its class

label is assigned to X. The distance between X and the ith
class sample mean feature vector is measured using the
square of the normalized Euclidean distance. That is

d(X, Class(i))"
Nfeature

+
k/1

(X
k
!Average (i)

k
)2

»ariance(i)
k

.

The object X is classified into class i*, where i* satisfies

d(X, Class(i*))"Min
i

d (X, Class(i)), i"1, 2,2 ,N
class

.

Based on our discriminative feature extraction method,
the classification rates for two shapes ‘‘1’’ and ‘‘1’’ using
various number of selected features via three different
approaches of moment invariants are shown by three
curves in Fig. 7d. The classification rates are obtained by
using 50 testing samples for each shape. The horizontal
axis represents the number of selected features, N

feature
,

and the vertical axis represents the percentage of correct
classifications. The classification rate of using any number
(even only one) of wavelet moment features is 100%. Ap-
plying Li’s moment invariants as features, the highest
classification rate obtained is 83% when 29 features are
used. It is noted that Li’s moment features in the experi-
ment are unstable as the classification rate oscillates
when the number of features increases; Some features
introduce contradictory information. This probably is
due to insufficient number of training samples used in
feature selection process, while the testing samples are
relatively large. Using Zernike’s moment invariants, the
highest classification rate obtained is 98% and the min-

imum number of features needed is 11. We can conclude
that the wavelet moment invariants are better than Zer-
nike’s moment invariants, and much better than Li’s
moment invariants for classifying these two seemingly
similar shapes with subtle differences.

5. Experimental results on N-class problems with added
noise

So far, we have described the wavelet-based method in
relation to a 2-class problem and made use of the two
shapes ‘‘1’’ and ‘‘D’’. In this section, we present our experi-
ments on other 2-class and N-class problems to assess the
robustness of the method in the presence of noise. Two
artificially generated shapes (Fig. 8) were used to illus-
trate that the wavelet-based moments, together with our
feature selection method described before, can provide
a set of discriminative features. We also used a set of 26
upper cased English letters (Fig. 12), although no two
shapes are seemingly similar, to show that the classifica-
tion performance by using wavelet moment invariants is
again better than that by Zernike’s moment invariants,
and much better than that by Li’s moment invariants.
Finally, we applied our method to classify two similar
wrenches as shown in Fig. 15. From these experiments,
we found that when the number of feature reaches a cer-
tain limit, the classification accuracy may not be in-
creased with additional features. The effectiveness of
some lower ranked features becomes questionable. The
discrimination measure Q of a feature was computed
based on a small set of training samples which may be
insufficient leading to an unreliable ranking. The main
reason is probably due to the fact that our feature selec-
tion method is suboptimal. The features were first ran-
ked according to their individual discriminative powers
thus computed, and then a subset of the top ranking
features were sought and used in testing. For the latter,
Branch and Bound algorithm [20] may be employed to
search for all possible feature combinations and guaran-
tee an ‘‘optimum’’ feature set which will be computation-
ally much more demanding.

Set 1: two artificially generated shapes. The training set
of the two artificially generated shapes illustrated in
Fig. 8 consists of 60 images (30 for each shape), which are
the scaled and rotated versions of the two shapes corrup-
ted by random noise. The testing set consists of 100
images (50 for each shape), which are also randomly
transformed versions of the two shapes. Fig. 9 shows
some noisy samples in various scales and orientations,
and their corresponding translation and scaling nor-
malized versions. Based on the proposed method of dis-
criminative feature selection described in Section 4, the
first and second best wavelet moment invariants are
EFwavelet

1,3,0
E and EFwavelet

1,2,0
E respectively. The corresponding
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Fig. 9. Some training images of two synthetic shapes (a) the noise-added, scaled and rotated images; (b) the scaling normalized images.

Fig. 8. Two synthetic shapes

wavelets, t
1,3

(r) and t
1,2

(r), are shown in Fig. 10. Since
the radial domain is in M0)r)1N, only the parts of
t
1,3

(r) and t
1,2

(r) in this domain are displayed. This
figure indicates that the maxima of these functions are
localized in the region near the three small triangles of
shape 1 as shown in Fig. 8, which provide the distinction
between these two shapes. As to Li’s moment invariants,
the first and second best features are M

12
and M

33
re-

spectively. While for Zernike’s moment invariants, the
first and second best features are EFZernike

7,7
E and

EFZernike
9,3

E respectively. The scattergrams in these three
feature planes are shown in Fig. 11. The scattergrams in
Fig. 11a corresponding to wavelet moment invariants are
separated, while other pairs of scattergrams shown in
Figs. 11c and b respectively for Zernike’s moment invari-
ants and Li’s moment invariants are significantly over-
lapping. This leads to the superior classification rate by
wavelet moment invariant features, as compared with
Zernike’s moment invariants and Li’s moment invari-
ants.

Fig. 11d shows three curves of classification rates cor-
responding to the use of three different feature sets. Given
the same number of features used, the correct classifica-
tion rate by wavelet moment invariants is higher than
that by Zernike’s moment invariants and that by Li’s
moment invariants respectively. When the first one to
four features were used, the correct classification rate was
100% by wavelet moment invariants. The highest classi-

Fig. 10. Two wavelets t
1,3

(r)"wave(1, 3) and t
1,2

(r)"
wave(1, 2) involved in the selected best two discriminating
wavelet moment invariants for shapes in Fig. 8.

fication rate obtained by using Zernike’s moment invari-
ants was 95% when 14 features were used, while the
highest classification rate obtained by using Li’s moment
invariants was only 87% when 24 features were used.

Set 2: 26 upper cased English letters. The second ex-
perimental set consists of 26 upper cased English letters
from ‘‘A’’ to ‘‘Z’’. For each letter, there are 30 randomly
generated versions in the training set, and other 30 ran-
domly generated versions in the testing set (see Fig. 12).
Some of the randomly generated samples of ‘‘A’’ and
their scaling normalized images are shown in Fig. 13.
Feature selections from three types of features were con-
sidered: those derived from wavelet moment invariants,
Zernike’s moment invariants and Li’s moment invari-
ants. Again, the minimum-distance classifier was used.
Three curves of classification rates obtained from the
testing samples are shown in Fig. 14 for three types of
features respectively. The highest classification rate ob-
tained by wavelet moment invariants was 100% using 37
features. Zernike’s moment invariants gave the highest
classification rate of 98.7% when 26 features were used,
while with that number of features the classification rate
of wavelet moment invariants was 99.5%. For achieving
98.7% classification rate, only 15 wavelet moment fea-
tures were required. Using Li’s moment invariants, the
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Fig. 11. Scattergrams of two shapes of Fig. 8 in the selected 2D feature spaces: (a) of the two best wavelet moment invariants, (b) of the
two best Li’s moment invariants, and (c) of the two best Zernike’s moment invariants; (d) classification rates corresponding to three
different feature sets used when 100 test samples are used.

Fig. 12. 26 upper cased English letters used in an experiment.
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Fig. 13. Some randomly generated samples of ‘‘A’’; (a) in different scales and orientations, (b) the scaling normalized versions.

Fig. 14. Test results on classification rates of three different moment-based feature sets for 26 upper cased English letters.

classification rates were all lower than 75.3%. Hence, we
are sure that the wavelet moment invariants are the best
features among the three families of moment invariants
for classifying the 26 upper cased English letters.

Set 3: ¹wo similar wrenches. The third experimental
set is on two similar wrenches shown in Fig. 15. There are
100 images (50 for each wrench) in the training set and
the testing set respectively, they are noisy, randomly
scaled and oriented versions of the two wrenches. Ac-
cording to the discriminative feature selection method,
the first and second best wavelet moment invariants are
EFwavelet

0,1,0
E and EFwavelet

0,1,2
E respectively. For Li’s moment

invariants and Zernike’s moment invariants, the first and
second best features are (M

1
and M

2
) and (EFZernike

4,0
E and

EFZernike
2,0

E ), respectively. The scattergrams of the
wrenches corresponding to these three types of features
are shown in Fig. 16. Only the scattergrams in Fig. 16a
corresponding to wavelet moment invariants are well
separated, while other pairs of scattergrams with Zer-
nike’s moment invariants and Li’s moment invariants
(Figs. 16b and c) respectively are overlapping. This is the

Fig. 15. Two similar wrenches.

reason why the classification rate obtained by wavelet
moment invariants was higher than that by Zernike’s
moment invariants and that by Li’s moment invariants
(Fig. 16d). The classification rate by wavelet moment
invariants is 100% for any number of features used. The
highest classification rates achieved by Zernike’s moment
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Fig. 16. Scattergrams of two wrenches of Fig. 15 in the selected 2D feature planes: (a) of the two best wavelet moment invariants, (b) of
the two best Li’s moment invariants, and (c) of the two best Zernike’s moment invariants; (d) classification rates corresponding to three
different feature sets.

invariants was 98% and that by Li’s moment invariants
was 64%; For obtaining these highest classification rates,
at least 15 features were needed for Zernike’s moment
invariants and 34 features were needed for Li’s moment
invariants.

6. Conclusion

We have presented a set of wavelet moment invariants
for capturing rotation invariant global and local shape

information among the objects of interest. Compared
with Zernike’s moment invariants and Li’s moment in-
variants, wavelet moment invariants can provide more
discriminative features for a variety of shapes even when
they are seemingly similar and in the presence of noise.
A method of selecting discriminative features, based on
a discrimination measure of each feature evaluated on
the training samples, is also proposed.

Using a minimum-distance classifier, wavelet moment
invariants gave the highest classification rate in all
four experiments, as compared with Zernike’s moment
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invariants and Li’s moment invariants. For the three sets
of test patterns of Figs. 4, 8 and 15, wavelet moment
invariants gave the highest classification rate when using
any number of features. For the fourth set (26 upper
cased English letters), wavelet moment invariants
achieved 100% classification rate when using 37 features,
whereas the highest classification rates obtained by Zer-
nike’s moment invariants and Li’s moment invariants
were only 98.7 and 75.3% respectively. Both analyses and
experiments have shown that our method is suited to
classifying many types of object shapes, particularly,
when they are seemingly similar but actually different.
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