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Abstract

In this paper, we proposed a B-Snake based lane detection and tracking algorithm without any cameras’ parameters. Compared with other

lane models, the B-Snake based lane model is able to describe a wider range of lane structures since B-Spline can form any arbitrary shape by

a set of control points. The problems of detecting both sides of lane markings (or boundaries) have been merged here as the problem of

detecting the mid-line of the lane, by using the knowledge of the perspective parallel lines. Furthermore, a robust algorithm, called CHEVP,

is presented for providing a good initial position for the B-Snake. Also, a minimum error method by Minimum Mean Square Error (MMSE) is

proposed to determine the control points of the B-Snake model by the overall image forces on two sides of lane. Experimental results show

that the proposed method is robust against noise, shadows, and illumination variations in the captured road images. It is also applicable to the

marked and the unmarked roads, as well as the dash and the solid paint line roads.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Autonomous Guided Vehicles (AGV) have found many

applications in the industries. Their applications had been

explored in areas, such as patient transportation in hospitals,

automated warehouses and other hazardous related areas. In

most applications, these AGVs have to navigate in the

unstructured environments. Path findings and navigational

control under these situations are usually accomplished

from the images captured by camera mounted on the

vehicles. These images are also interpreted to extract

meaningful information such as positions, road markings,

road boundaries, and direction of vehicle’s heading. Among

many extraction methods, the lane marking (or road

boundary) detection from the road images had received

great interest. As the captured images are usually corrupted

by noises, lots of boundary-detection algorithms have been

developed to achieve robustness against these noises.

The main properties that the lane marking (or boundary)

detection techniques should possess are:

† The quality of lane detection should not be affected by

shadows, which can be cast by trees, buildings, etc.

† It should be capable of processing the painted and the

unpainted roads.

† It should handle the curved roads rather than assuming

that the roads are straight.

† It should use the parallel constraint as a guidance to

improve the detection of both sides of lane markings (or

boundaries) in the face of noises in the images.

† It should produce an explicit measurement of the

reliability of the results obtained.

Up to present, various vision-based lane detection

algorithms have been developed. They usually utilized

different lane patterns (solid or dash white painted line, etc.)

or different road models (2D or 3D, straight or curve), and

different techniques (Hough, template matching, neural

networks, etc.). Basically, there are two classes of

approaches used in lane detection: the feature-based

technique and the model-based technique. The feature-

based technique localizes the lanes in the road images by

combining the low-level features, such as painted lines

[5–10] or lane edges [1,2], etc. lane segments that are

detected by traditional image segmentation. Accordingly,
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this technique requires the studied road having well-painted

lines or strong lane edges, otherwise it will fail. Moreover,

as it has the disadvantage of not imposing any global

constraints on the lane edge shapes, this technique may

suffer from occlusion or noise.

On the other hand, the model-based technique just uses a

few parameters to represent the lanes. Assuming the shapes

of lane can be presented by either straight line [11,12,13,16]

or parabolic curve [3,4,14,15], the processing of detecting

lanes is approached as the processing of calculating those

model parameters. This way, the model-based technique is

much more robust against noise and missing data,

compared with the feature-based technique. To

estimate the parameters of lane model, the likelihood

function [3,4,11,12,16], Hough transform [13], and the

chi-square fitting [14,15], etc. are applied into the lane

detection. However, as the most lane models are only

focused on certain shapes of road, thus they lack the

flexibility to modeling the arbitrary shape of road.

Motivated by the above problems, we here present a new

B-Snake based lane detection and tracking algorithm for the

outdoor application of AGV. The main characters of our

method are the following:

1. A novel B-Snake based lane model which describes the

perspective effect of parallel lines is constructed with

dual external forces for generic lane boundary or

marking, it is able to describe a wider range of lane

structures than other lane models such as straight and

parabolic models. In addition, it is robust against

shadows, noises, etc. due to the use of the parallel

knowledge of roads on the ground plane. The lane

detection problem is formulated by determining the set of

lane model control points.

2. A robust algorithm called Canny/Hough Estimation of

Vanishing Points (CHEVP) is presented for providing a

good initial position for the B-Snake lane model. This

algorithm is robust to noises, shadows, and illumination

variations in the captured road images, and is also

applicable to both the marked and the unmarked, dash

paint line and solid paint line roads.

3. Using Gradient Vector Flow (GVF) to construct the

B-Snake external force field for lane detection, a

minimum error method called Minimum Mean Square

Error (MMSE) that finds the correspondence between

B-Snake and the real edge image is presented to

determine the parameters of road model iteratively.

Road tracking is carried on after successful lane

detection, by a simple external force field and MMSE

method, tracking is efficient and speed is fast.

Besides B-Spline, other kind splines also can be used in

our lane model. Our early version of lane model used

Catmull-Rom spline [24,25,26]. The different between the

B-Spline and the other kind splines is the locations of the

control points.

The remained structure of this paper is arranged as

follows. Section 2 introduces a novel B-Spline lane

model with dual external forces. In Section 3, the

CHEVP is described for B-Snake lane model initializa-

tion. Section 4 presents a minimum error method,

MMSE, to determine the parameters for lane detection

and lane tracking. This section also shows some

representative results of applying the proposed algorithm

to various types of roads under different environments.

This paper concludes in Section 5.

2. Road model

2.1. The modeling of lane boundaries

Lane model plays an important role in lane detection.

The lane modeling has to make some assumptions about the

road’s structure in the real world in order to fully recover 3D

information from the 2D static image. In this paper, we

focus on constructing the 2D lane model, by assuming that

the two sides of the road boundaries are parallel on the

ground plane as shown in Fig. 1(a).

In addition, let us assume that the right side of road is the

shifted version of the left side of road at a distance,

D ¼ ðxr 2 xlÞ; along the x axis in the ground plane. Here, xr

and xl are the x coordinates of the two correspondence

points, Plðxl; yÞ and Prðxr; yÞ; in the ground plane. After

projection from the ground plane to the image plane, the

horizontal distance d ¼ ðcr 2 clÞ between the corresponding

points plðcl; rÞ and prðcr; rÞ; which are the projected points of

Plðxl; yÞ and Prðxr; yÞ; is:

d ¼
l2Dðr 2 hzÞ

Hðl2 þ hz2Þ
ð1Þ

where l is the focal length of the lens, H is the height of the

camera location, hz is the position of vanish line in the image

pane, and r is the vertical coordinate used in the image plane

(see Fig. 1(b) for reference).

The horizontal distance d can be represented as

d ¼ kðr 2 hzÞ ð2Þ

where

k ¼
l2D

Hðl2 þ hz2Þ

Let us define the mid-line of the road in the image

plane as

Lmid ¼ ðcm; rmÞ ð3Þ

Thus the left side of the modeled road is

Lleft ¼ ðcl; rlÞ; ð4Þ
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where

cl ¼ cm 2
1

2
d ¼ cm 2

1

2
kðrl 2 hzÞ and rl ¼ rm: ð5Þ

Similarly, the right side of the modeled road is

Lrights ¼ ðcr; rrÞ ð6Þ

where

cr ¼ cm þ
1

2
d ¼ cm þ

1

2
kðrr 2 hzÞ and rr ¼ rm: ð7Þ

From the above modeling, it is easy to observe that the

problem of detecting two sides of road can be formulated as

the problem of detecting the mid-line of road. In following

Sections, we would show that k can be estimated directly

from image data without any camera’s parameters.

2.2. B-Spline snake

Snakes [17], or active contours, are curves defined within

an image domain which can move under the influence of

internal forces from the curve itself and external forces from

the image data. Once internal and external forces have been

defined, the snake can detect the desired object boundaries

(or other object features) within an image. Snakes have been

used widely in many applications, such as edge detection

[17], shape modeling [18,19], segmentation [20,21], and

motion tracking [20,22].

A more economical realization of snake can be reached

by using far fewer state variables by cubic B-Splines. The

B-Splines are piecewise polynomial functions that provide

local approximations to contours using a small number of

parameters (control points). It can represent curves by four

or more state variables (control points). As required, the

represented curves may be open or closed. The flexibility of

the curve increases as more control points are added. Each

additional control point either allows one more inflection in

the curve or, when multiple knots are used [23], reduces

continuity at one point.

2.2.1. Uniform cubic B-splines

An open cubic B-Spline, with n þ 1 control points

{Q0;Q1;…;Qn}; consists of ðn 2 2Þ connected curve

segments, giðsÞ ¼ ðriðsÞ; ciðsÞÞ; i ¼ 1; 2;…; ðn 2 2Þ: It is C2

continuous and has both its continuous slopes and

curvatures. Each curve segment is a linear combination of

four control points by the parameter s; where s is normalized

between 0 and 1 ð0 # s # 1Þ: It can be expressed as:

gðsÞ ¼
X

i

MiðsÞQi ð8Þ

where MiðsÞ are the spline basis functions.

According the B-Spline property, the B-Spline would

pass through the control point by triple the corresponding

control points.

2.3. Using B-Snake to describe lane markings

(or boundaries)

We use a set of control points to describe the mid-line of

the road by B-Spline, and a additional parameter k

(as described in Section 2.1) to determine the left and the

right sides of road model. In order to make B-Splines pass

through the first and the last control points, we set the

first three control points equal and the last three control

points equal.

The mid-line of road model can be expressed by a

B-Spline as

Lmid ¼ ðcm; rmÞ ¼ MRðsÞ

Qi21

Qi

Qiþ1

Qiþ2

2
6666664

3
7777775
;

i ¼ 21; 0; 1; 2;…; n:

ð9Þ

Fig. 1. Parallel lines on ground plane and image plane.
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The mid-line of lane model can be deformed by the external

forces EM_sumðsÞ; which is the sum of the dual external

forces calculated from both the left and the right sides of

lane model, ELðsÞ and ERðsÞ:

EM_sumðsÞ ¼ ELðsÞ þ ERðsÞ ð10Þ

In Fig. 2, EM_sumðsÞ would push the lane model to the left.

Also, the difference of horizontal components of ELðsÞ

and ERðsÞ; denoted as Ec
M_difðsÞ; would lead to adjustment of

the parameter k:

Ec
M_difðsÞ ¼ Ec

LðsÞ2 Ec
RðsÞ: ð11Þ

Fig. 3 shows how Ec
M_difðsÞ would lead to the adjustment of

the parameter k; increasing (Fig. 3(b)) or decreasing (Fig.

3(a)). In Fig. 3(a), the left side of the estimated lane model is

located at the left of the real road’s left boundary, while the

right side of the estimated lane model is located at the right

of the real road’s right boundary. As shown in Fig. 3(a),

Ec
M_difðsÞ points to the right, we can define it as leading to

decreasing k. On the contrary, in Fig. 3(b), the left side of

the estimated lane model is located at the right of the real

road’s left boundary; and the right side of the estimated lane

model is located at the left of the real road’s right boundary.

This way, Ec
M_difðsÞ points to the left, which will lead to

increasing k.

Compare to other lane models, there are few advantages

for B-Snake lane model with dual external forces:

1. B-Snake can describe much wider range of lane shapes

while retains compact representation, since B-Spline has

local controllability and can form arbitrary shape. For

example, it can describe more complex road shape, such

as ‘S’ or sharp corner turn, just by increasing the number

of control points. Other lane model cannot describe those

complex shapes, since they use only a single polynomial.

2. With dual external forces, B-Snake model would be

robust against shadows, noises, occasional missing and

false markings, etc. since the sampling locations for

calculating the dual external forces are combined with

the knowledge of parallel lines on the ground plane, the

external forces for deformation of B-Snake is not

depended on one, but both sides of lane model at a time.

3. The processing time will be reduced since two

deformation problems for both sides of lane have been

formulated to one deformation problem.

4. This B-Snake lane model is particular suitable for lane

tracking application, since the parameters of lane

model for the current frame is usually similar to those

in the previous frame, i.e. the movements of the

control points are smaller. On the contrary, for other

lane models such as the second order polynomial lane

model, when the road shape has a small change, it

may cause a large change in the parameters of model.

For most lanes, we found that using 3 control

points is efficient to describe their shapes. Therefore,

we select 3 control points in this paper for constructing the

lane model. Fig. 4(a) shows a lane model formed by a set of 3

control points, Q0;Q1 and Q2 shapes (Q0 and Q2 are triple, so

Fig. 2. Example on the external forces of the mid-line of lane model. Solid

lines are the real road edges, while dash lines are the lane model.

Fig. 3. Example on the adjustment of the parameter k. Solid lines are the real road edges, while dash lines are the lane model. (a) The case that would lead to

decreasing k. (b) The case that would lead to increasing k.
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we actually compute a curve of two segments from the

sequence of seven control points Q0;Q0;Q0;Q1;Q2;Q2;Q2).

Since we only concern the road in the camera’s field of view,

we limit the location of the first control point Q0 in the

vanishing line if the vanishing line is in the captured image. In

the case that the vanishing line is above the top of image, Q0

will be limited in the top row of the captured image. The end

control point Q2 is limited to the bottom row of image.

For the case that three control points are not sufficient to

describe the shape of road, our structure-adaptive B-Snake

[28] model can be implemented for auto-increasing the

number of control point to adapt the shape of road. The

more control points are used, the more complex shape can

be formed. Fig. 4(b) gives an example of using four control

points to describe a ‘S’ shape road.

3. Initialization of B-Snake lane model: CHEVP

algorithm

Some lane detection algorithms required the operator to

provide the initial estimate of the road location, while others

required the specific road structure scene (such as straight

road) as the first road image. These requirements on the road

initializations are clumsy for the automatic road detection

task. Therefore, automatic initialization technique, able to

extract the location of any type of the lane shapes, is

important and necessary.

3.1. Description of the CHEVP algorithm

The CHEVP (Canny/Hough Estimation of Vanishing

Points) algorithm has been developed to meet these

requirements. The road is assumed to have two parallel

boundaries on the ground, and in the short horizontal band

of image, the road is approximately straight. As a result of

the perspective projection, the road boundaries in the image

plane should intersect at a shared vanishing point on

the horizon. Below we briefly introduce this algorithm,

for full details please visit: www.ntu.edu.sg/home5/

ps2633175g/chevp.htm. There are following five processing

stages in CHEVP algorithm:

1. Edge pixel extraction by Canny edge detection. Canny

edge detection is employed to obtain edge map.

2. Straight lines detection by hough transform.

The detected edge points are used to vote for possible

lines in the space of line parameters. The image is here

partitioned into a small number of horizontal sections, i.e.

five as shown in Fig. 5(b), in order to accommodate the

change in road vanishing point due to the bend of the road.

The height of image section is gradually reduced as moving

to the upper part of image. Notice that, each image section

has its own space of line parameters, and edge points in each

image section vote separately for possible straight lines in

that section. By suitably thresholding the normalized

accumulator spaces, line segments can be finally detected

for each image section (Fig. 5(c)).

3. Horizon and vanishing points detection.

The detected straight lines of each image section are

paired, and the intersections of any pair of lines vote for

vanishing points on another Hough space. The votes are

weighted by the sum of the paired lines’ normalized

accumulator values produced in the Step 2. This process is

repeated for each image section separately, but vote in the

same Hough space. The votes on each column of the Hough

space are summed for detecting possible vanishing line. The

row with the maximum support is chosen as the horizon (or

vanishing line) in the image plane. Fig. 5(d) shows the

detected vanishing line.

For each image section, its vanish point can be

determined as the point around the horizon and with the

strongest support. Fig. 6(a) shows both the vanishing point

Fig. 4. B-Snake based lane model.
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of image Section 2 and a pair of lines voting for it.

The detected vanishing points for all image sections are

shown in Fig. 6(b). Notice that, no vanishing point exists for

the image Section 5, since no lines can be detected in this

image section.

4. Estimate the mid-line of road and the parameter k by

the detected road lines.

The lines voting for vanishing point are assumed to be

road lines in each image section. From the bottom image

section upward, select the two detected road lines from the

left and the right sides, which are closest to the mid column

of that section. If these two road lines do not exist in the

current image section, then the procedure will be repeated in

the next higher image section until the required road lines

are obtained. Fig. 7(a) shows the two lines L1 and L2 chosen

in image Section 4, since no line exist in image Section 5.

Then, connect the vanishing point ðvp4Þ of this image

Section 4 and the middle point ðPm4Þ of the two points (Pl4

and Pr4) which are the intersection points of the two road

lines L1 and L2 at the bottom row of that section.

The line passing through points vp4 and Pm4 intersects at

the bottom of Section 3 at Pm3: Then the parameter k can be

estimated by:

k ¼
cright 2 cleft

rmid 2 hz
: ð12Þ

where hz is the vertical coordinate of vanishing line. In the

case of Fig. 7(a),

cleft ¼ cl4 cright ¼ cr4 rmids ¼ rl4 ¼ rr4 ð13Þ

Fig. 5. Detection of straight lines and vanishing line.
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Down from image Section 4, since in image Section 5 no

vanishing point has been detected, we assume this section’s

vanishing point follows the vanishing point vp4 of Section 4.

Extend the line (passing through vp4 and Pm4) and joint at

the bottom of image Section 5 at Pm5: Similarly, in image

Section 3 we can detect vanishing point vp3 (vp3 is the same

point as vp4 in Fig. 7(b)). The line ðvp3 2 Pm3Þ intersects at

the bottom of image Section 2 at Pm2: (In the case the

vanishing point vp3 cannot be detected, we assume vp3

follows to vp4:) Image Section 2 has detected a vanishing

point vp2; so just connect vp2 and Pm2 and intersects at

the bottom of Section 1 at Pm1: Image Section 1 also has

a detected vanishing point vp1; then the line ðvp1 2 Pm1Þ

intersects at the top of Section 1 at Pm0: Fig. 7(b) shows

the whole mid-line. After constructing the mid-line of road,

the both sides of road boundaries can be constructed based

on the mid-line of road and the estimated k:

5. Initial the control points of the lane model to approach

the mid-line detected by last step.

We first choose Pm0 and Pm5; respectively, as the start

control point Q0 and the end control point Q2 for lane

model (see Fig. 8(a)). We know if knots of B-Spline are

known, then the according control points can be gotten.

The selection of the knot P1 depends on the values of

Fig. 6. Vanishing points detection. (a) The vanishing point of the image Section 2 and the lines which vote for it. (b) The detected vanishing points for all image

sections.

Fig. 7. Estimate mid-line of road. (a) Two lines in image Section 4 are chosen from both sides of road boundaries to estimate k. (b) Estimated mid-line of road.
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angles b1 and b2 defined in Fig. 8. If angles b1 and b2

are not equal to zero, we choose Pm as the knot for Q1:

That is P1 ¼ Pm; where Pm is the middle point of Pm1

and Pm2: If b1 ¼ 0 and b2 – 0; we choose Pm1 as the

knot P1 (for Q1). If {b1 – 0 and b2 ¼ 0} or {b1 ¼ 0

and b2 ¼ 0}; we choose Pm2 as the knot P1 (for Q1).

Therefore, the control point Q1 can be calculeted by

Q1 ¼
3

2
P1 2

1

4
ðQ0 þ Q2Þ: ð14Þ

The estimated B-Spline is shown in Fig. 8(b). Notice, k

is not changed here, just taken the same values from the

last step.

3.2. Experiment results on testing CHEVP algorithm

The CHEVP algorithm has been applied to real road

images grabbed by a camera at different locations and at

different times. These images include straight and curve

roads with painted or unpainted, solid or dash lines, and

Fig. 8. Initialize the lane model to approach the mid-line detected. (a) Choose control points for lane model. (b) Final result of initialization for lane model.

Fig. 9. Some results of CHEVP.
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shadow. Some results are shown in Fig. 9. Fig. 9(a)

shows the result of applying CHEVP to the images with

the curved road. CHEVP locates the double paint lints on

the left side of the lane, and the white stripe on the right

side of the road, especially it remains high accuacy in

the near place to camera. Notice that the location of the

detected mid-line is not totally accurate in the top of

image due to the curve lines being hard to be detected

by straight line parameters in Hough space. However, it

is well within the tolerance necessary to use them to

make initial predictions for the lane model detection.

Fig. 9(b) shows another examples of applying the

CHEVP algorithm to curve-road image with strong

shadow edges. It can be observed that, even the white

paint line on the right passes through noisy shadow

edges, the Hough transform and the shared vanishing

point constraint allow CHEVP algorithm to successfully

locate the feature position. On the contrary, edge tracking

algorithms would become confused by the shadow edges,

which would offer multiple possible continuations.

Fig. 9(c) shows the results of the CHEVP algorithm on

the multi-lane image taken on a divided highway with

strong shadows. As CHEVP algorithm is designed to

choose the lane which is closest to the centre column of

the image(see Step 4 of CHEVP), hence, even under

strong shadows, CHEVP algorithm successfully locates

the solid white stripe on the left side of the lane, as well

as the broken white stripe on the right side of the lane

where the vehicle is located. An example applying

CHEVP algorithm to the unpainted lane is shown in

Fig. 9(d). The road image was taken on a 1-lane road for

bicycle. It can be seen that the road is wet after raining.

The CHEVP algorithm can only detect the vanishing

points for Sections 1 and 2. However, the estimated mid-

line of road is still acceptable. As we can observe in

Fig. 9, combined with global constraint (vanishing line)

and local constraint (straight lines and vanishing points

of each section), the CHEVP algorithm shows promise to

provide a robust method for extracting and identifying

the lines composing the road, with an ability to reject

‘weak’ local optimality in an image. Moreover, the

parameters of camera are not required. Being initialized

by CHEVP, the B-Snake would deform to lane

boundaries more precisely by using MMSE approach,

which is presented in next Section.

CHEVP algorithm assumes that the horizon (or vanishing

line) appears horizontal in the image plane, although it need

not be in the camera’s field of view. If the terrain varies in

slope, CHEVP algorithm may be unable to correctly locate

all the road lines due to their not having a vanishing point on

the horizon row corresponding to the tangent plane at the

vehicle location. However, CHEVP algorithm has ability to

identify the best horizon row and vanishing point for each

section of the image, but it would lead to a 3D road model,

so we leave it to the future work.

4. B-Snake parameters updated from image data

Based on the initial location of the control points that are

determined either by CHEVP algorithm or lane detection

result of previous frame, the B-Snake would further approach

toroadedgeaccurately in thecurrent frame.ThisSectiondeals

with this problem.

4.1. Minimum mean square error approach

B-Snake should be updated to minimize (1) the sum

of the external forces from the both sides of the road

model for achieving accurate position of B-Snake, and

(2) the difference of the external forces from the both

sides of the road model for achieving suitable parameter

k: In addition, external forces should be transmitted to

each control point when updating B-Snake.

When the B-Snake approaches the road boundaries, its

external force should satisfy the equation.

Eext ¼ 0 ð15Þ

where

Eext ¼ EM_sumðsÞ ¼ ELðsÞ þ ERðsÞ: ð16Þ

If external force of the B-Snake is zero, then there

is no change in both the position and the shape of the

mid-line of road. So we can define the following

equation for solving the requirement of external force

being zero.

Eext ¼ gðLmidðtÞ2 Lmidðt 2 1ÞÞ

¼ gMRðsÞðQðtÞ2 Qðt 2 1ÞÞ ¼ gMRðsÞDQðtÞ ð17Þ

where g is a step-size and DQðtÞ is defined as

the adjustment of the control points Q in each iteration

step.

QðtÞ ¼ Qðt 2 1Þ þ DQðtÞ ð18Þ

External force can be sampled along the B-Spline of

B-Snake at a certain distance. Then Eq. (17) can be

solved digitally. Here, the MMSE solution for the digital

version of the Eq. (17) is given as a matrix form.

DQðtÞ ¼ g21½MTM�21MTEext ð19Þ
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where

M ¼

M21 0 · · · · · · 0

0 M0 0 · · · 0

· · · · ·

0 · · · 0 Mn21 0

0 · · · · · · 0 Mn
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: ð20Þ

and m is the sampling points number in ith segment of

the B-Spline. Eext is the force vector digitized on

the B-Spline. Here, n ¼ 2 is for the case of using three

control points.

The difference of the external forces from the left and the

right side of lane model would lead to changing

the parameter k (as given in Section 2.3). Estimation of

the parameter k can be similarly given as follows.

Ek ¼ Ec
M_dif ¼ ðEc

LðsÞ2 Ec
RðsÞÞ ð21Þ

We set the right-hand side of the equation equal to the

product of a step size and the negative time derivative of the

left-hand side. The resulting equation is:

Ek ¼ tðkðtÞ2 kðt 2 1ÞÞ ¼ tDkðtÞ ð22Þ

kðtÞ ¼ kðt 2 1Þ þ DkðtÞ ð23Þ

where t is a step-size for k: Thus,

DkðtÞ ¼ Ek=t ð24Þ

Here we choose GVF [27] as the external force for B-Snake

to perform the lane detection, since GVF has a larger

capture range. But GVF is time consuming. So, after

successful lane detection, we use the traditional external

force (directly calculated from image gradient) to speed up

the lane tracking.

4.2. Application in lane detection

4.2.1. Update B-snake parameters for lane detection

In order to achieve the solutions in Eqs. (18) and (23),

an iterative procedure is adopted. The steps contained in this

iterative minimization process are as follows:

1. Initialization Step. Initialize the control point parameters

by CHEVP algorithm introduced in Section 3.

2. Calculate the GVF of the edge road image as the external

force of B-Snake.

3. Calculate MMSE in Eqs. (19) and (24) for obtaining

DQðtÞ and DkðtÞ; respectively.

4. Obtain QðtÞ and kðtÞ:

5. If kDQðtÞk . threshold1 and kDkðtÞk . threshold2; then

set QðtÞ to Qðt 2 1Þ and kðtÞ to kðt 2 1Þ; and go to step 3;

Otherwise, go to step 6.

6. Stop. The last estimations of QðtÞ and kðtÞ are regarded as

the solutions of MMSE.

4.2.2. Lane detection results

This lane detection algorithm has been simulated and

tested on real road images. These lane images include curve

and straight road, with or without shadows and lane marks.

Some of these results are shown in Fig. 10. The initializations

for proposed B-Snake lane model are all obtained from

CHEVP algorithm. Fig. 10(a) is the approach result of a curve

painted road without any shadow, it can be seen that the

B-Snake lane model can achieve a very good result on

approaching lane markings on the both sides of the road.

Three examples of applying this lane detection algorithm to

curve and straight roads with strong shadows are shown in

Fig. 10(b)–(d). Their initialized locations of B-Snake are

Figs. 8(b), 9(b) and (c), respectively. All results are correctly

matching to the lane markings despite the shadows lay over

the pained lines. Fig. 10(e) shows an example of MMSE

approach to an unpainted road image, whose CHEVP result

has been appeared in Fig. 9(d). Although its initialization is

not quite correspondent, the lane model approaches the lane

boundaries accurately even the both road boundary edges are

not smooth near the bottom of the image. A slight curve road,

which is detected by the proposed lane detection algorithm, is

shown in Fig. 10(f). Please notice in the top of image the

result is not matching very well due to weak lane edge pixels.

However, the matching is still maintaining high accuracy in

the part where is near to the camera.

For a 240 £ 256-pixel road image, the whole proces-

sing time of CHEVP and lane detection on a Pentium 3

system with 128RAM is below 4 s, which is depending

on the number of edge pixels. However, since it is only

for initializing B-Snake and runs only one time at

the start performing of lane detection, it would not effect

the real-time performance of the lane detection.

4.3. Application in lane tracking

Lane tracking is much easier than lane detection.

Considering there are only small changes between two

consecutive frames, we can regard the estimated parameters

of the lane model in the previous frame as the initial

parameters for the current frame.

The algorithm for lane tracking is quite similar to lane

detection except two differences:

† Instead of using CHEVP, the parameters of lane model in

the current frame are initialized by the parameters

estimated in previous frame.
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† The GVF is replaced by a simple external force, which is

directly calculated from the image gradient.

Several road sequences that include more than 700 road

images have been tested for lane tracking. As the algorithm

is simple and efficient, in real practice, we can achieve a

speed of at least 2 frames/s. The percentage of correct lane

tracking is over 95%, depended on the real road conditions.

Some results of the lane tracking in one road sequence are

shown in Fig. 11, which seems quite good. For the full

Fig. 10. Lane detection results.

Fig. 11. Some results of lane tracking.

Y. Wang et al. / Image and Vision Computing 22 (2004) 269–280 279



sequence, please visit: www.ntu.edu.sg/home5/

ps2633175g/lane_tracking.htm.

5. Conclusion

In this paper, a novel B-Snake based lane model, that

describes the perspective effect of parallel lines, has been

established for generic lane boundaries (or markings). It is

able to describe a wider range of lane structures than other

lane models, such as straight and parabolic models. The

problems of detecting both sides of lane markings (or

boundaries) are merged here as the problem of detecting the

mid-line of the lane. A robust algorithm, called CHEVP, is

presented for providing a good initial position for the B-

Snake lane model. This algorithm is robust against noise,

shadows, and illumination variations in the captured road

images. It is also applicable to the marked and the

unmarked, as well as the dash and solid paint line roads.

To approach the lane edges based on the initialized location,

a minimum error method, MMSE, that measures the

matching degree between the model and the real edge

map is presented to determine the control points of road

model for lane detection and tracking. In this method, dual

external forces are sampled along the B-Spline and

comprehensively transmitted to each control point for its

update by minimizing both the sum of the external forces

and the difference of horizontal components of external

forces on the two sides of the road model. The obtained

results are quite good and accurate under various conditions.

Several extensions of model are possible. In this paper, we

mainly focused on 2D lane model. However, it is easy to

extend our lane model to 3D lane model by just simply

adding in one more component for control points to describe

the hill-dale geometry of road. For initializing the 3D lane

model, the CHEVP algorithm has to be improved to meet

the 3D lane model requirement. In order to improve the lane

detection, more features of the road, such as such as color,

texture, saturation and reflectance data from the laser

scanner, should be used.
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