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Rationale and Objectives. Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascu-
lar disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more
important.

Materials and Methods. In this article, we present a computer-assisted WML segmentation method, based on local fea-
tures extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton
density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained
on expert-defined WMLs, and is then used to classify new scans.

Results. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance
from the training set.

Conclusions. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying
sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the
manual segmentation results from two experienced neuroradiologists.
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Cerebrovascular disease (CVD) in elderly individuals is
very important. In particular, CVD increases the likeli-
hood of clinical dementia (1– 4) even in the absence of
clinical stroke (5), albeit the literature is somewhat incon-
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clusive as to whether CVD has simply an additive role to
Alzheimer’s disease (AD) or there are interactions between
the two. Approximately one third of patients that meet clini-
cal and pathologic diagnostic criteria for AD have some de-
gree of vascular pathology (6,7). The impact of CVD on
mild cognitive impairment—in which the etiology of the
cognitive deficit is generally less clear—is likely to be even
greater. Therefore, to identify biologic markers specific to
the AD process, it is critical to also identify the extent of
concurrent CVD related brain injury that is often clinically
silent (8 –11), because, at the very least, CVD increases the
likelihood of clinical presentation of dementia, for the same
level of AD-related pathology.

Population studies, such as the Cardiovascular Health
Study or the Rotterdam Scan Study, have shown that

brain lesions, especially white matter lesions (WMLs), are
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associated with age, clinically silent stroke, higher sys-
tolic blood pressure, lower forced expiratory volume in 1
second, hypertension, atrial fibrillation, carotid and pe-
ripheral arterioscleroses, impaired cognition, and depres-
sion (12–14). Furthermore, it has been shown that stroke
patients with a large WML load have an increased risk of
hemorrhagic transformation, higher preoperative risk of a
disabling or fatal stroke during endarterectomy, or inter-
cerebral hemorrhage during anticoagulation therapy (15).
The increased interest in brain lesion research may im-
prove diagnosis and prognosis possibilities for patients
with cardiovascular symptoms.

The relationship between diabetes mellitus and cogni-
tive impairment, as well as with increased risk for demen-
tia, has been documented by several clinical studies (16–
18). This relationship is mediated by brain pathology,
including cerebral infarcts, leukoaraiosis, and tissue atro-
phy (19–24). Precise measurement of such pathology
from magnetic resonance imaging (MRI), and more im-
portantly measurement of evolution of pathology over
time, is very important for disease monitoring and evalua-
tion of treatments for diabetes mellitus, such as control-
ling blood pressure and glycemia. All of these previous
studies have employed subjective evaluation of brain le-
sions, such as the scale of de Groot et al (12), which ex-
amined the relationship between periventricular and sub-
cortical WMLs and cognitive functioning in 1,077 elderly
subjects randomly sampled from the general population,
and are hampered by variations in the anatomical defini-
tion of brain abnormalities. Therefore such methods of
evaluation of brain abnormality in diabetes mellitus are
not easily reproducible, qualitative, and nearly impossible
to use without paired reading and high level of quality
control in large multisite studies and in longitudinal eval-
uations that might span several years (25). There is an
increasing need for development of highly automated,
validated, and reproducible computer-based image analy-
sis tools, especially in large-scale longitudinal studies
evaluating brain pathology in diabetes mellitus.

Because brain lesion patterns are very heterogeneous,
ranging from punctuate lesions in the deep white matter
to large confluent periventricular lesions, the scoring of
such lesions is complicated. Moreover, it has been shown
that different visual rating scales lead to inconsistencies
among studies (26). Commonly used ordinal brain lesion
scoring methods, such as used in the Cardiovascular
Health Study (27) or the Rotterdam Scan Stud (12,28),
offer semiquantitative information on the prevalence of

such lesions. Exact spatial information is useful because it
has been suggested that specific lesion patterns are associ-
ated with specific symptoms (29,30). Moreover, for longitu-
dinal studies aiming to capture relatively small changes in
brain lesion patterns, accurate information of lesion volume
and location is essential. Expert-based delineation of brain
lesions is known to be difficult to reproduce across raters, or
even within the same rater, which makes it problematic and
that combination of readings from independent reader may
be necessary in a longitudinal study.

The use of an automated segmentation method that
detects brain lesions with a high sensitivity and specificity
could be advantageous. Most of the successful methods in
the literature have been developed for the detection of
multiple sclerosis (MS) lesions (31–46). In early ap-
proaches when multi-modality images are not easily avail-
able, features describing normal tissue statistics (either
intensity property alone or both intensity and spatial prop-
erties) are usually extracted from available modality and
then combined with various classifiers, such as: minimum
distance classifier, Bayesian classifier, decision tree, for
MS lesion segmentation purpose. In (31), Kamber et al
built a voxel-wise probability normal tissue (GM [gray
matter], WM [white matter], VN [ventricle]) distribution
model in Talairach space and then use a decision tree to
discriminate MS lesion tissue from normal tissue based
on entropy minimization. A similar approach was pursued
elsewhere (46), in which spatial statistics of normal brain
tissues were first determined from a training set, and de-
viations from normal variation were flagged as lesions. In
Udupa et al (33), major brain tissues (WM, GM, and CSF
[cerebrospinal fluid]) were modeled as fuzzy connected
regions; potential MS lesions are regarded as isolated is-
lands and were further refined by human judgment.

Most current imaging studies offer the potential to com-
bine multiparametric MRIs (ie, images obtained via different
MRI protocols). The advantage of integrating information
from multiple sequences is that it can reduce the uncertainty
and increase the accuracy of the segmentation. One can cate-
gorize most state-of-the-art lesion segmentation algorithms in
two main categories: supervised voxel-wise classification and
unsupervised clustering. Leemput et al (37) proposed an
unsupervised WML segmentation model via setting up a
multivariate Gaussian model to describe normal tissue signal
distribution, and using it to detect MS lesions as outliers. In
supervised methods, a set of images in which the desired
segmentation is known (expert manual delineation) is used
as a training set to build and fine-tune the segmentation al-
gorithm (35,44). Based on the well-known medical image

processing system INSECT, Zijdenbos et al (41) proposed a
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supervised MS lesion segmentation method using multispec-
tral (T1-weighted [T1-w], T2-weighted [T2-w], proton den-
sity-weighted [PD]) intensity signal and spatial prior as
features and artificial neural network for classification
purpose. The method was developed in the context of a
Phase III clinical trial and results were evaluated on 29
subjects, revealing that the obtained lesion measurements
are statistically equivalent to those obtained by trained
human observers. Wu et al (40) described a method to
quantitatively measure volumes of three subtypes of MS
lesions (T1 hyperintense enhancing, T1 hypointense, and
CSF-like “black hole” lesions), as well as segmentation of
GM, WM, and CSF simultaneously. This method used a
expectation-maximization approach that iteratively inte-
grated a statistical intensity feature–based (k-nearest-
neighbor) classifier and three-channel TDS� (32,42,43),
which makes use of a deformable digital brain atlas to
eliminate the confounding misclassification, based on the
assumption that WMLs are only within WM regions.
Somewhat related is also the method (35) that used an
artificial neural network trained on three multiparametric
MRI and on probability distribution of GM, WM, and
CSF. Anbeek et al (44) proposed a supervised and multi-
spectral WML segmentation method, multispectral inten-
sity (T1-w, T2-w, PD, fluid attenuation inversion recovery
[FLAIR], and inversion [IR]) as well as spatial features
are defined as features to discriminate WML tissue from
normal tissue, KNN was then used for voxel-wise evalua-
tion of the possibility to be WML tissue. This method
was then extended to segment WM, GM, ventricle, CSF,
and WML (47). Admiraal-Behloul (45) proposed a multi-
modality white matter hyperintensities segmentation ap-
proach that also employs multispectral intensity (T2-w,
PD, and FLAIR) as well as tissue spatial distribution
probability map as features. Signals in T2-w and FLAIR
were used to define feature, and PD was just used for
skull-stripping purpose. Fuzzy inference system was then
used to further infer whether a voxel is WMH or normal
tissue. Some other methods have combined space and
time into the lesion characterization process (48,49), al-
beit these approaches focused primarily on quantifying
the temporal variations of MS lesions, important in differ-
entiating active from chronic lesions.

However, relatively less attention has been given to
brain lesion segmentation in elderly individuals or AD or
diabetic patients. Because MS lesions present different
characteristics from lesions in elderly or diabetic individu-
als, those methods are not directly applicable to our stud-

ies, although they have formed the foundation for our
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development. Because of the decreased contrast between
WM and GM in MRI in the elderly, techniques that re-
quire the segmentation of WM and GM for the extraction
of the WMLs perform moderately well when applied to
geriatric patients, especially when they were originally
designed and trained to extract lesions in MS patients. A
histogram-based segmentation method was used for iden-
tification of leukoaraiosis in elderly individuals (50). Al-
though the results of that study were promising, we have
found in large-scale studies that such relatively simple
segmentation methods are not sufficiently robust. A
method using a supervised classification method with rel-
atively good sensitivity but somewhat limited specificity
to lesions has been presented (51).

In this article, we present a novel computer-assisted
WML segmentation approach that has been designed to
process MRI scans of elderly diabetes patients and used
in a large clinical study: Action to Control Cardiovascular
Risk in Diabetes Memory in Diabetes (ACCORD-MIND,
http://www.accordtrial.org/), a Phase III large clinical trial
that aims to investigate the relationship between diabetes,
treatment intensity, and thinking and memory in older
patients (25). Our method uses a combination of image
analysis and support vector machines (SVM). Image in-
tensities from multiple MRI acquisition protocols, after
coregistration, are used to form a voxel-wise attribute
vector (AV) that helps to discriminate lesion from various
normal tissue image profiles during segmentation. In gen-
eral, there are four steps in our approach, as summarized
in Fig 1. First, a preprocessing step includes co-registra-
tion of different MRI modalities of the same patient to
skull-stripping, intensity normalization, and inhomogene-
ity correction. Second, a set of training samples is manu-
ally delineated by expert readers and then used to build a
classification model via SVM and AdaBoost; this step is
applied only once, during training. Third, the SVM model
is used to perform the voxel-wise segmentation. Finally,
false-positive voxels are further eliminated via postpro-
cessing techniques described later, thereby producing final
WML segmentation results. This methodology is de-
scribed and then validated against expert human readings.

METHODS

Patients and MR Imaging
Images used in this study were offered by the

ACCORD-MIND MRI trial, which is a prospective ran-

domized four-site trial on conventional versus aggressive
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treatment of diabetes (http://www.accordtrial.org/). Mean
age of these subjects was 62 (mean � SD 62.2 � 5.9,
range 54–77, median 61). Twenty-seven were female and
18 were male. MRIs were performed during the baseline
period on enrollment into the study. All 45 participants’
exams consisted of transaxial T1-w, T2-w, PD, and
FLAIR scans. All scans except T1-w were performed
with a 3-mm slice thickness, no slice gap, a 240 � 240
mm field of view, and a 256 � 256 scan matrix. T1-w
scans were performed with a 1.5-mm slice thickness,
same slice gap, field of view, and scan matrix.

Preprocessing
The multiple images acquired from the same individual

are coregistered to compensate for possible motion be-
tween scans. Mutual information–based affine registration
(52), implemented in FMRIB Software Library (53), is
employed for coregistration of multimodality images. The
FLAIR image of each subject is used as a reference
space, to which all other modality images are trans-
formed. After coregistration, a deformable model based
skull-stripping algorithm called Brain Extraction Tool
(BET) (54), implemented in FMRIB Software Library
(53), is used to generate an initial brain tissue mask from
the coregistered T1-w image, and then this brain tissue
mask is used to extract the brain region from all other
modality images. Finally, for each image volume, inho-
mogeneities are corrected by N3 (55), and intensity nor-
malization within and across different subjects is mini-
mized by a global histogram matching method. To this
end, for two three-dimensional images (or two-dimen-

Figure 1. Summary of our computer-assis
sional slices) I1 and I2 with histograms HI1
�i� and HI2

�i�,
respectively, the transformation, T (T�i� � s � i � t,
where i is the intensity value before and after transforma-
tion T, s, and t are scaling and translation parameters of

T, respectively), is found so that �
i�1

i�max

�HI1
�T �i�� � HI2

�i��2

is minimal, where max is the maximum intensity value.

Training

Manual segmentation.–—Ten training sets with highly
variable lesion loads were selected from these 45 ACCORD-
MIND participants. WMLs in these subjects were manually
segmented by two neuroradiologists (RNB, ERM). The seg-
mentation of the first rater was regarded as the gold standard
for training our classifier, whereas the segmentation of the
second rater was used for evaluating interrater agreement
and for comparing it against computer-rater agreement.

Attribute vector.–—In general, the amount of intensity
overlap between WMLs and normal tissue varies greatly
across different modalities, as shown in Fig 2. In T1-w
images, WMLs have intensities similar to GM, and in
T2-w and PD images, WMLs look very similar to CSF.
Although the FLAIR image has the least intensity overlap
between WMLs and normal tissues, it has been suggested
in the literature that FLAIR is less sensitive in the poste-
rior fossa (56), may lead to “overestimation” of lesion
load, and has a higher intervendor variability (57,58).
Furthermore, FLAIR may present hyperintensity artifacts
(59,60) that might lead to false positives, thereby render-
ing it difficult to use only the FLAIR images to segment
WMLs. Therefore, it is important to integrate information

hite matter lesion segmentation protocol.
from different modalities to minimize the ambiguity in
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Figure 2. Intensity overlaps between white matter lesions tissue and normal tissue in T1,
T2, proton density-weighted, and fluid attenuation inversion recovery scans, respectively (his-

tograms for normal tissue have been scaled by 0.1 for visualization purpose).304
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identifying WMLs from normal tissue using only a single
modality image.

An attribute vector (AV) is computed for each non-
background voxel in a three-dimensional reference space
for each subject, FLAIR image space serves as the refer-
ence space to which all other acquisitions are coregis-
tered. To include spatial information from the vicinity of
each voxel and make AV robust, each AV includes not
only the four image intensities of that voxel, but also in-
tensities of neighboring voxels, as shown in Fig 3. More-
over, to make AV robust to noise, each modality image
of the same subject is smoothed by a Gaussian filter with
a very small kernel (0.5 mm). Mathematically, for a voxel
v in domain �, its AV is defined as F�v� � �Im����: m �

�T1,T2,PD,FLAIR�, and ��B(v), where B(v) is a small
neighborhood of v in �. In other words, the four image
intensities of all voxels in the neighborhood of v are con-
catenated to an AV. The neighborhood size is selected
based on the discrimination ability of AV, in our imple-
mentation it is 5 mm � 5 mm � 5 mm. Figure 4 shows
the discrimination ability of this AV with respect to
WML. In the figure on the left side, a voxel specified by
white cross is selected; in the figure on the right side, the
distance in Hilbert space (to be defined later in the arti-
cle) between the AV of the marked voxel and the AVs of
all other voxels is shown color-coded. It can be seen from
the figure that lesion tissue shows high similarity to the
selected voxel.

SVMs
SVMs are a relatively new machine learning tool

and have emerged as a powerful technique for learning
from data and, in particular, for solving binary classifi-
cation problems. SVMs originate from Vapnik’s statis-
tical learning theory (61) and they formulate the learn-
ing problem as a quadratic optimization problem whose

Figure 3. Image intensities from all modalities and all voxels in
the spatial neighborhood of a voxel form an attribute vector that
serves as an “imaging signature” of each voxel.
error surface is free of local minima and has global
optimum. In a binary classification task such as the one
in our study (normal tissue/lesion tissue), the aim is to
find an optimal separating hyperplane (OSH) between
the two datasets. Figure 5 illustrates a two-class prob-
lem with a hyperplane separating the two groups.
SVMs find the OSH by maximizing the margin (mini-
mum distance) between the classes. The main concepts
of SVM are to first transform input data into a higher
dimensional space (Hilbert space) by means of a kernel
function and then construct an OSH between the two
classes in the transformed space (Hilbert space). Those
data vectors nearest to the constructed line in the trans-
formed space are called the support vectors (Fig 5);
they contain valuable information regarding the OSH.
SVMs are an approximate implementation of the
method of “structural risk minimization” aiming to at-
tain low probability of generalization error. The theory
of SVM can be referenced elsewhere (62).

The kernel function used in our application is Gaussian
radial basis function kernel, defined as

K(x, y) � exp� �x � y�2

2�2 	
where x and y are two feature vectors, and � controls the
size of the Gaussian kernel.

The fitness of a hyperplane in feature space is usually
measured by the distance between the hyperplane and
those training points lying closest to it (the support vec-
tors). A consequence of this is that we can completely

Figure 4. Discrimination ability of attribute vectors (AV). Left:
Fluid attenuation inversion recovery scans image with selected
lesion voxel marked as white cross. Right: Distance distribution in
Hilbert space from all other voxels to this selected voxel. AVs of
other lesion voxels are similar (having small distance in the at-
tribute space) to the selected voxel, indicating that this imaging
signature is characteristic of lesions.
specify our decision surface in terms of these support
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vectors. An overview of SVM pattern recognition tech-
niques may be found elsewhere (63).

Training SVM via AdaBoost
After an AV is defined for each location in each

training scan, a nonlinear pattern classifier is con-
structed from the entire training set (ie, by using all
lesion voxels of all training scans as examples of imag-
ing profiles to be recognized in new scans, along with
a large number of normal tissue voxels). These exam-
ple AVs are provided to SVM (64,65). Because the
number of normal tissue voxels is far higher than the
number of lesion voxels, it is essential to select only a
representative set of normal tissue voxels comparable
to the number of lesion voxels. This selection is not
random, but it is rather guided by the classification re-
sults themselves, using the AdaBoost algorithm (66).
This approach is based on a sequence of classifiers that
rely increasingly on misclassified voxels, because those
are presumably the voxels on which the classifier must
focus. During this adaptive boosting procedure, each
sample receives a weight that determines its probability
of being selected in a training set for the next iteration.
If a training sample is accurately classified, then its
likelihood of being used again in subsequent iterations
is reduced; conversely, if a training sample is inaccu-
rately classified, then its likelihood of being used again

Figure 5. An example of two-class (� and �) problem showing
optimal separating hyperplane (dotted line) that support vector
machines use to divide two groups’ data, and the associated
support vectors. Data shown by � and � represent binary class
�1 and �1, respectively.
is increased.
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Segmenting a New Image

Voxel-wise segmentation of WML by SVM.–—In the
testing stage, T1-w, T2-w, and PD images of a new (not
in the training set) scan are first coregistered to FLAIR
space of the subject using mutual information registration
method mentioned before, and then the pseudo-likelihood
of each voxel being WML is measured by the generated
SVM classifier, as described earlier. The output of SVM
is a scalar measure of abnormality (as shown in Fig 6,
left), which is further binarized by an optimal threshold to
produce the labels for WMLs (as shown in Fig 6, right).
These labels are called initial WML labels, because false-
positive labels will be screened out by the methods pro-
posed next.

Elimination of false-positive labels.–—Misregistration
between the four MRIs usually results in a number of
false positives around the cortex because of the convo-
luted nature of the cortex, which amplifies the adverse
effect of slight registration inaccuracies. By analyzing the
spatial distribution of AVs from different samples, we
found that AVs of false-positive voxels actually form a
third class associated with the SVM training samples, which
is far away from both classes of lesion and non–lesion train-
ing samples. In other words, these voxels don’t match either
lesion or normal tissue, according to the training set. Thus
these false-positive voxels can be eliminated to a large ex-
tent by computing the distance of their AVs to the training
samples in the Hilbert space that the SVM training model
was built on, as described in the SVM section.

The distance measure in Hilbert space between two
vectors v1 and v2 can be calculated as

Dh
2(v1, v2) � K(v1, v1) � K(v2, v2) � 2K(v1, v2),

where K is the Gaussian kernel function used by the
SVM.

Suppose L � �vi
�,1 � i � m� is the set of lesion AVs

in training samples, m is the total number of AVs in L;
N � �vi

n,1 � i � p� is the set of normal tissue AVs in
training samples, p is the total number of AVs in N; F �

�vi
f,1 � i � q� is the set of AVs of false positives, q is

the total number of AVs in F. Figure 7 illustrates the dis-
tribution of L, N, and F in Hilbert space. Thus we mea-
sure the distance of each AV to a certain set of AVs in
the following way. For each vi

�, its distance to L in Hil-

bert space is defined as dvi
� � min

j�1

m

Dh
2�vi

�,vj
��, where j � i;

similarly, for each vi
n, its distance to N in Hilbert space is

p

defined as dvi
n � min

j�1
Dh

2�vi
n,vj

n�, where j � i; for each vi
f,



Academic Radiology, Vol 15, No 3, March 2008 COMPUTER-ASSISTED SEGMENTATION OF WHITE MATTER LESIONS
its distance to L in Hilbert space is defined as

dvi
f

L
� min

j�1

m

Dh
2�vi

f,vj
��; similarly its distance to N in Hilbert

space is defined as dvi
f

N
� min

j�1

p

Dh
2�vi

f,vj
n�. Figure 8 shows

the distributions of these distances, which indicates that we
can simply use this minimal distance measure to eliminate
the false-positive samples, by selecting a suitable threshold.

Extra-axial hyperintense regions, like fat in the orbits,
cannot always be completely removed by the skull-stripping
algorithm used in preprocessing stage. Imaging profiles be-

Figure 6. Illustration of voxel-wise segm
Left: The result of voxel-wise evaluation m
voxel, based on generated SVM model (1:
sion segmentation results after thresholdin
attenuation inversion recovery image. Thre
cation boundary as illustrated in Fig 7, wit
tively, 0.0 is selected as a threshold.

Figure 7. Illustration of L, N, and F distribution in Hilbert space.
Green and red represent attribute vectors (AVs) of healthy and
lesion tissue, respectively, whereas blue represents AVs of voxels
that are misclassified mostly because minor registration errors
between the four different acquisitions (T1, T2, PD, and fluid at-
tenuation inversion recovery scans) causes them to have imaging
profiles that are drastically different from the training set, and
hence prone to misclassification.
longing to these regions are more similar to WMLs than that
of normal tissue and therefore they are eliminated from the
segmentation mask after SVM classification. This is done by
morphologic operations combined by adaptive thresholding
in skull-stripped FLAIR image. Figure 9 demonstrates one
sample result from the algorithm.

RESULTS

Two representative results are shown in Fig 10. “Gold
standard” (manual) and computer-assisted segmentation re-
sults are superimposed on the FLAIR images, respectively.

ROC Analysis
We have computed the receiver operating characteristic

(ROC) curve for our computer-assisted lesion segmenta-
tion algorithm. The ROC curve is a graphical plot of the
sensitivity versus (1 - specificity) for a binary classifier
system as its discrimination threshold is varied (67). Fig-
ure 11 shows a zoomed version of ROC curve showing
detail in the region of interest. Different symbols on the
ROC curve show different thresholds we used. Addition-
ally, “*” shows second rater’s manual segmentation result
compared with our gold standard.

By investigating the balance between sensitivity and
specificity, we determined the optimal threshold to be

0.05. The specificity of a ROC is defined as
TN

TN � FP
,

where TN represents the volume of true negatives and FP
represents the volume of false positives. In WML segmenta-
tion, TN is always a very large number as compared with FP,

ion by support vector machines (SVM).
howing different lesion rating for each
n; �1: normal). Right: White matter le-
map on the left superimposed on fluid

d actually corresponds to SVM classifi-
classes labeled as �1 and 1 respec-
entat
ap s
lesio
g the
shol
h two
which makes specificity of ROC insensitive to FP change.
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Statistical Analysis
We trained the classifier on data from 10 participants,

Figure 9. Demonstration of orbital false
tives (red) overlaid on fluid attenuation inv
elimination. Right: After orbital false-positi

Figure 8. Demonstration of false positive
Hilbert space. (a) Distance distribution of
tives), and the overlap between �dvi

�� and �
�dvi

n�(blue, true negatives), �dvi
f

N� (red, false p
�dvi

f
N� (violet). White matter lesion segmenta

tion and (d) after false-positive elimination
and tested it on the remaining 35 cases. We have per-
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formed statistical comparisons between the lesion volume
obtained by manual and computer-assisted segmentation

ive elimination. Left: Orbital false posi-
n recovery scans before false-positive
mination.

ination via attribute vector distance in
blue, true positives), �dvi

f
L � (red, false posi-

iolet). (b) Distance distribution of
es), and the overlap between �dvi

n� and
esults (c) before false-positive elimina-
hresholding the distance map.
posit
ersio
elim
�dvi

�� (
dvi

f
L � (v

ositiv
tion r
(with threshold � 0.05) of these 35 subjects.



sion
res a

Academic Radiology, Vol 15, No 3, March 2008 COMPUTER-ASSISTED SEGMENTATION OF WHITE MATTER LESIONS
Paired Spearman correlation (SC) measurements among
first rater, second rater, and computer-assisted method shows
high correlation among them (P � .001 and 	 � 0.95 be-
tween second rater and first rater; P � .001 and 	 � 0.79
between computer and first rater; P � .001 and 	 � 0.74
between computer and second rater). Although high in
correlation measurement, mean � standard deviation
(median) of the lesion volumes obtained from first, sec-
ond, and computer raters were 1,494 mm3 � 3,416 mm3

(559 mm3); 2,839 mm3 � 6,192 mm3 (1461 mm3); and
1,869 mm3 � 3416 mm3 (393 mm3) respectively, the
mean volume of 2nd rater is approximate twice of 1st rater,
which suggests that manual segmentation is subject to
large inter-rater variability as shown in Fig 12.

To investigate the variation of the lesion load’s distribu-
tion of the 35 evaluated subjects, the coefficient of variation
(CV) was calculated. It is a statistical measurement of the
dispersion of data around the mean and calculated as: CV �



�
, where 
 is the standard deviation and � is the mean. The

CVs for the three raters were 189%, 218%, and 182%, re-

Figure 10. Comparison of white matter lesion segmentation resul
two subjects. In subject 1, gold standard and computer-assisted le
ly; in subject 2, gold standard and computer-assisted lesion measu
spectively, which shows that all three raters agree on the
large variation in lesion load from this set of subjects. Be-
cause the distribution of lesion volume is skewed, log trans-
formation (log10) was performed and further statistical analy-
sis was done using the log-transformed data. Comparisons
between means of the log-transformed lesion load (volume
in mm3) among raters were performed using paired t-test.
On average, the mean of first rater reading was 0.37 (log10

mm3) lower than second rater (P � .001), and not signifi-
cantly higher by 0.07 (log10 mm3) than computer rater (P �
.001). The second rater’s reading was significantly higher
(P � .001) than the computer rater by .38 (log10 cc). The
agreement between the computer rater and the first rater is
better than that between second rater and first rater. Comput-
er-assisted segmentation is an extension of human rater’s
power to more accurately and precisely quantification lesion
volume.

DISCUSSION

We have presented an approach to the problem of WML

tween gold standard and computer-assisted segmentation for
measurements are 11,714.9 mm3 and 12,397.9 mm3, respective-
re 15,978.5 mm3 and 17,884.9 mm3, respectively.
ts be
segmentation, based on integrating multiple MRI acquisi-
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tions and training a nonlinear pattern classification algorithm
to recognize imaging profiles that are representative of a
brain lesion. By combining four types of MRI acquisition

Figure 12. 95% CI (confidence intervals) for gold standard (first rater),
second rater, and computer-assisted segmentation method (computer)
over 35 subjects, respectively. Volume measurements are in mm3.

Figure 11. A zoomed part of receiver operating characteristic cur
rater compared with gold standard (first rater). Other symbols on th
threshold � 0.0, Œ threshold � 0.05, □ threshold � 0.2 (see Fig 6
protocols—namely FLAIR, T2, PD, and T1—a multivariant
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imaging signature is constructed for every image voxel and
is subsequently evaluated by a nonlinear pattern classifier.
Results that agree well with human experts were obtained.

The objective, quantitative, and reproducible evaluation
of WML has been a challenge in many neuroimaging
studies. Although qualitative readings have been em-
ployed by many studies, the relatively limited sensitivity
and interrater agreement is an obstacle, particularly in
longitudinal studies or in studies seeking to detect subtle
effects. Our experiments confirm that, although human
experts are relatively internally consistent in what they
define as lesion, they can differ considerably between
each other; thereby, their readings when combined in-
creases the measurement mean and standard deviation and
therefore decreases study power.

We did not rigorously evaluate the relative value of
each acquisition protocol. Although FLAIR provides the
best contrast between periventricular WMLs and ventri-
cles, PD helps avoid potential “overestimation” of lesion
load that has been observed with the FLAIR sequence,
especially in the posterior fossa. PD may also help in

our segmentation algorithm. �: Indicates the result of the second
rve denote different thresholds (ie, � threshold � �0.15, �
e definition of threshold).
ve of
eliminating false positives in regions in which FLAIR has
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hyperintense artifacts. We experimented with different
combinations of three modalities and observed that the
quality of the segmentation deteriorated when omitting
any of the four image types. Therefore it appears that all
four protocols carry some discriminatory power, albeit of
different degrees.

One of the challenges we faced during the develop-
ment of the segmentation method was that the number of
lesion training voxels that we had available were dramati-
cally smaller than the number of training voxels for
healthy tissue, because lesions constitute a very small
percentage of the entire brain. Even smaller was the num-
ber of voxels that were misclassified. Therefore a natural
bias toward healthy tissue was inevitable. Although one
could randomly select an equal number of voxels for
training, the bias toward the more frequent tissues would
still persist. We overcame this problem by using adaptive
boosting (ie, via an iterative procedure that progressively
emphasized voxels being misclassified). Voxels that were
incorrectly classified had more likelihood to influence
subsequent iterations. Therefore, in the end, the classifier
was constructed mainly from “difficult-to-classify” voxels.

Although in the experiments reported here we mainly
used a binary segmentation output, our approach actually
derives a continuous spatial map that provides a pseudo-
likelihood of each voxel corresponding to abnormal tis-
sue. Such a continuous map can ultimately be a more
appropriate way to characterize certain types of tissues,
such as periventricular abnormalities, which might present
a continuous scale of pathology.

Although an extensive experimental comparison be-
tween this approach and alternative methods in the litera-
ture is beyond the scope of this article, our algorithm has
several features that render it novel and likely to be rela-
tively more robust. In particular, we used the currently
most robust machine learning method (ie, SVM), which is
known to provide optimal generalization ability. More-
over, we used AdaBoost, which is a significant aspect of
our approach, because it progressively learns from mis-
classified examples. Put simply, instead of weighting all
voxels similarly, the “difficult” ones are identified by the
algorithm, which places relatively more emphasis on
them. Automated removal of false positives via examina-
tion of the distance in the Hilbert space is also an impor-
tant novelty of our approach; this step is most often per-
formed manually in a postprocessing step.

The framework of our method is somewhat similar
to Abeeck’s approach (44). Methodologically, both ap-

proaches start with a number of preprocessing steps
(intrasubject coregistration, skull stripping, inhomoge-
neity correction, and intensity normalization) and use a
supervised classifier (KNN in Anbeek’s approach,
SVM in this article) to separate lesions from normal
brain tissue. The key difference is AV definition. In
Anbeek’s approach, both intensity and spatial informa-
tion are used in AV definition. Because of the arbitrary
occurrence nature of WML, it is difficult to form a
“complete” training set that covers all occurrences in
practice; our approach uses only intensity in AV defi-
nition, combined with AdaBoost-based training sample
selection method, thus is easier in forming a “com-
plete” empiric training set. KNN is known to be com-
putational intensive with high-dimensional AV, that’s
why the AV definition in Anbeek’s approach includes
intensity and spatial features only on a single voxel,
which may make such AV definition vulnerable to mis-
registration. SVM does not have such limitation and
our AV definition includes not only multispectral sig-
nals on a certain voxel but also its small neighborhood,
which makes it more robust to misregistration.

Several improvements and extensions to our basic
methodology are possible. In particular, the current al-
gorithm examines the data voxel by voxel, with the
exception of using some signal information from a
small neighborhood around each voxel. The anatomic
context around each voxel could potentially help im-
prove accuracy and reduce false positives. In our previ-
ous work (46), we have used a statistical atlas derived
from deformable registration of many images of
healthy individuals without any pathology, and we de-
tected abnormalities as deviations from the normal spa-
tial variation of healthy tissue. We anticipate that add-
ing such statistically based anatomic information to the
signal-based information examined here, is likely to
improve segmentation accuracy. A second direction of
work that might benefit the segmentation is toward
coregistration among different modalities. The mutual
information based coregistration method we are cur-
rently using provides a pairwise alignment between two
modalities. A better way would align images of all mo-
dalities simultaneously to reach a consistent solution.
Although the smoothing procedure in our WML seg-
mentation protocol performed pretty well in dealing
with coregistration error, this step can be improved by
a neighborhood voting strategy (ie, for a certain voxel),
measuring the correlation of selected AVs in the neigh-
borhood across different modalities to AVs in the train-

ing set and selecting the one with the highest correla-
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tion coefficient. This will lead to more robust AVs, and
more accurate segmentation result.

In summary, by combining four different MRI acquisi-
tion protocols and using them to train a nonlinear pattern
classification technique, we developed a relatively robust
and fully automated segmentation method for white mat-
ter abnormalities. We are in the process of applying this
method to data from over a dozen different centers in
multisite studies and have obtained stable results, which
further bolsters our confidence that this approach can fa-
cilitate large-scale neuroimaging studies seeking to quan-
tify vascular disease.
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