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Rationale and Objectives. Needle biopsy is currently the only way to confirm prostate cancer. To increase prostate can-
cer diagnostic rate, needles are expected to be deployed at suspicious cancer locations. High-contrast magnetic resonance
(MR) imaging provides a powerful tool for detecting suspicious cancerous tissues. To do this, MR appearances of cancer-
ous tissue should be characterized and learned from a sufficient number of prostate MR images with known cancer infor-
mation. However, ground-truth cancer information is only available in histologic images. Therefore it is necessary to warp
ground-truth cancerous regions in histological images to MR images by a registration procedure. The objective of this arti-
cle is to develop a registration technique for aligning histological and MR images of the same prostate.

Material and Methods. Five pairs of histological and T2-weighted MR images of radical prostatectomy specimens are
collected. For each pair, registration is guided by two sets of correspondences that can be reliably established on prostate
boundaries and internal salient bloblike structures of histologic and MR images.

Results. Our developed registration method can accurately register histologic and MR images. It yields results comparable
to manual registration, in terms of landmark distance and volume overlap. It also outperforms both affine registration and
boundary-guided registration methods.

Conclusions. We have developed a novel method for deformable registration of histologic and MR images of the same
prostate. Besides the collection of ground-truth cancer information in MR images, the method has other potential applica-
tions. An automatic, accurate registration of histologic and MR images actually builds a bridge between in vivo anatomi-

cal information and ex vivo pathologic information, which is valuable for various clinical studies.
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Prostate cancer is classified as an adenocarcinoma, or glan-
dular cancer, that begins when normal semen-secreting pros-
tate gland cells mutate into cancer cells. Pathologic analysis
shows the regular glands of the normal prostate are replaced
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by irregular glands and clumps of cells for prostate cancer
(1). From the radiologists’ perspective, the variations at the
cell level lead to changes of signal intensity in in vivo medi-
cal images (eg, magnetic resonance [MR] and ultrasound
images). Because MR images provide better contrast be-
tween prostate cancer and normal tissue in the peripheral
zone (2,3), some researchers proposed to use endorectal or
whole-body coil MR images for image-based prostate cancer
identification (2,3). Recently, with the progress of pattern
recognition theory, some algorithms (4,5) have been de-
signed to automatically identify cancerous tissue using image
features extracted from MR images.

In our study toward the early diagnosis of prostate can-
cer, we proposed a computer-aided biopsy system, which
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Figure 1. Schematic description of our proposed computer-aided biopsy system. (1) Generate optimal biopsy strategy based on pa-
tient-specific image information. (2) Generate optimal biopsy strategy based on population-based statistical information. (3) Integrate the

two biopsy strategies and apply them to an individual patient.

aims to increase the diagnosis accuracy of prostate biopsy
using population-based statistical information (6) as well as
patient-specific image information. As shown in Fig 1, our
proposed biopsy system consists of three modules, respec-
tively for image-based biopsy optimization, atlas-based bi-
opsy optimization, and integration and application of opti-
mized biopsy strategies. In the atlas-based biopsy optimiza-
tion module, biopsy needles are deployed at the locations
where the statistical atlas of prostate cancer distribution ex-
hibits higher cancer incidence. In the image-based biopsy
optimization module, biopsy needles are deployed at the
locations where the tissue appearances are similar to those of
cancerous tissue. To achieve this objective, an automatic
image analysis method is expected for labeling the suspi-
cious cancerous tissue by learning the MR signatures of can-
cerous tissue from a sufficient number of prostate MR image
samples where ground-truth cancer has been identified.
However, since the ground-truth cancer information is only
available in the histological images, it is necessary to warp
the confirmed cancerous regions in histological images to
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MR images, in order to collect ground-truth cancer informa-
tion in MR images. Figure 2 shows an example of warping
a ground-truth cancerous region from the histological image
to the MR image of the same prostate. The dark pink region
in Fig 2a indicates ground-truth cancerous region in the his-
tological image, and the green region in Fig 2c denotes the
warped ground-truth cancerous region in the MR image.
The warping of ground-truth cancerous regions is gen-
erally accomplished by human experts (i.e., manually la-
beling cancerous regions in MR images) by referring to
cancer locations in the corresponding histologic images
(4,7). However, this process is very tedious and time-
consuming, particularly for labeling a large number of
samples. Also, manual labeling is often irreproducible and
thus subject to interrater and intrarater inconsistency.
Therefore, in this article, we propose a method to register
histologic images with MR images of the same prostate.
It is worth noting that the application of this method is
far beyond the collection of ground-truth cancer informa-
tion, because an accurate coregistration of prostate histologic
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Figure 2. An example of warping a ground-truth cancerous region from the histological image to the magnetic resonance (MR) image
of the same prostate. (a) Prostate histologic image, where the dark pink region denotes ground-truth cancer labeled by a pathologist.
(b) Prostate T2-weighted MR image. (c) Prostate T2-weighted MR image with manually warped cancer ground truth as indicated by a

green region.

and MR images actually builds a bridge between in vivo
anatomic information and ex vivo pathologic information,
which is valuable for various clinical applications (8,9).
Considering various distortion and cutting artifacts in
histologic images and also fundamentally different nature
of histologic and MR images, our registration method is
guided by the common features that can be reliably iden-
tified in both histologic and MR images (i.e., two types of
automatically identified landmarks locating on prostate

boundaries and salient internal anatomical regions), which
are simply named as boundary landmarks and internal
landmarks, respectively, in this article. Importantly, by
using the internal landmarks commonly available in both
histologic and MR images, the registration of anatomical
structures inside the prostate can be successfully com-
pleted, because the selected internal landmarks provide
salient regional information to establish correct correspon-
dences within the prostate capsule. Given the definitions
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of the similarities between boundary landmarks and be-
tween internal landmarks, an overall similarity function is
proposed to integrate the similarities between automati-
cally detected corresponding landmarks and the smooth-
ness constraints on the transformation between histologic
and MR images. By optimizing this overall similarity
function, the correspondences between selected landmarks
as well as the transformation between histologic and MR
images can be simultaneously obtained.

It is worth noting that our registration framework is
similar in previous work (10), which aims to nonrigidly
match landmarks based on their spatial relations. How-
ever, besides the spatial information, we incorporate the
geometric and image characteristics of landmarks into the
registration framework, which facilitates the accurate reg-
istration of prostate histologic and MR images.

The remainder of this article is organized as follows. In
the Related Work, the previous studies on the registration of
histological and MR images are briefly reviewed. In the
Methods section, the details of our registration method are
described. Afterwards, a set of experiments are presented in
the Result section to validate the accuracy of our proposed
registration method, and to demonstrate its applications in
warping ground-truth cancerous regions to MR images. The
conclusion and future direction of this study is provided in
the Conclusion and Future Work section.

RELATED WORK

In the recent two decades, medical image registration
has become a hot research area, with various applications
in longitudinal study (11,12), population-based disease
study (13), image information fusion (14), and image-
guided intervention (15). Multimodality registration is one
of the most interesting topics, because it paves the way to
construct a comprehensive understanding of anatomic or
pathologic structure by integrating information gained
from different imaging modalities. However, although
multimodality image registration methods have been ex-
tensively investigated (16—18), the studies dealing with
the registration of histologic images are very limited,
probably because of the more complicated and diverse
nature of histologic images. Among the limited number of
work, Taylor et al (19) proposed a method to register a
set of whole mount prostate histologic images with three-
dimensional (3D) B-mode ultrasound images. In this
method, manually outlined prostate surfaces in both histo-
logic images and ultrasound images are aligned using a
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3D correlation algorithm. The correspondences estab-
lished on prostate surfaces are further propagated to the
interior of prostate glands for comparing the sizes and the
spatial locations of tumors identified in histologic data
and 3D ultrasound images. Jacobs et al (20) proposed a
method for the coregistration and warping of MR images
to histologic sections. This method consists of a modified
surface-based registration algorithm followed by an auto-
mated warping approach using nonlinear thin plate splines
to compensate for the distortions between the datasets. In
the registration method proposed by Schormann et al
(21), the brain histologic volume is firstly reconstructed
by aligning a set of histologic slices. Then, the recon-
structed histologic volume is transformed to the MR im-
age space using a principal axes transformation. To ac-
count for differences in the morphology of individuals, a
fast full multigrid method is used to determine 3D nonlin-
ear deformation. In other work (22), d’Aische et al pro-
posed an algorithm to capture nonrigid transformation
between digital images of histologic slides and digital
flat-bed scanned images of cryotomed sections of the
larynx. This method measures image similarity using a
mutual information criterion, and avoids spurious defor-
mations from noise by constraining the estimated defor-
mation field with a linear elastic regularization term. In
Wachowiak et al’s work (18), the abdominal histologic
sections are registered with ultrasound images using a
swarm optimization method. This work mainly focuses on
the optimization method for multimodality registration,
whereas the similarity between histologic sections and
ultrasound images is defined by normalized mutual infor-
mation. Bardinet et al (23) proposed to coregister the his-
tologic, optical, and MR data of the human brain simulta-
neously by using mutual information. In their work, a
reference volume constructed from photographs of the
frozen brain is used to align each histologic section and
further register the histologic volume with postmortem
MR image.

The aforementioned methods can be categorized into
two classes. The first class of methods focuses on regis-
tering the boundaries of anatomic structures (19,20). For
these methods, although organ contours can be perfectly
aligned, it is not guaranteed that internal structures are
also accurately registered. The second class of methods
focuses on registering images by maximizing the overall
similarity of two images, such as using mutual informa-
tion (18,21-23). These registration methods use the image
information from the interior of the anatomical structures.
However, they might be misled by various distortions and
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cutting artifacts in the histological images, because
patches with low structural content often lead to morpho-
logically inconsistent local registrations (24).

To overcome the limitations of the previous methods,
we propose to register prostate histologic and MR images
using two types of automatically identified landmarks,
which locate on prostate boundaries and salient internal
anatomical regions, respectively. These two kinds of land-
marks are named as boundary landmarks and internal
landmarks, respectively, in the remainder of this article.
Compared with the first class of previous methods
(19,20), which are only guided by the aligned boundaries
of anatomic structures, our method is able to successfully
register the anatomical structures inside the prostate, by
using the detected bloblike internal landmarks commonly
available in both histologic and MR images. On the other
hand, the limitation of the second class of previous meth-
ods (18,21,22) (ie, misregistration from distortion and
cutting artifacts of histologic images) can be potentially
avoided as the local patches around detected landmarks
have salient structure information for correspondence
matching. Considering the different properties of the two
types of landmarks, the similarity between boundary land-
marks is defined by geometric features, whereas the simi-
larity between internal landmarks is defined as local nor-
malized mutual information. By optimizing an overall
similarity function that integrates the similarities between
landmarks and the smoothness constraints on the esti-
mated transformation between histologic and MR images,
the correspondences between the landmarks and impor-
tantly the dense transformation between histologic and
MR images can be simultaneously obtained.

In the remainder of this section, Boundary Landmarks
and Internal Landmarks will describe the detection and
the similarity definition of boundary landmarks and inter-
nal landmarks, respectively. The overall similarity func-
tion that integrates the similarities between landmarks and
the spatial constraints on transformations will be pre-
sented in Overall Similarity Function.

Boundary Landmarks

Boundary landmarks detection.—Because the organ
boundaries are usually important for registration, the
points located on the prostate boundaries are selected as
the first type of landmarks to be used for helping register

histologic and MR images. In our study, the prostate cap-
sules are first segmented from histologic and MR images.
Then, a triangular mesh surface is generated for each
prostate boundary using a marching cubes algorithm (25),
with the vertices of the surface selected as the boundary
landmarks.

Similarity definition of boundary landmarks.—Because
each boundary landmark is actually a vertex of the sur-
face, its spatial relations with vertices in the neighbor-
hood can be used to describe the geometric properties
around the boundary landmark. In particular, an affine-
invariant attribute vector (26) is used to characterize the
geometric anatomy around each boundary landmark. As-
suming x; is a boundary landmark under study, its geo-
metric attribute is defined as the volume of the tetrahe-
dron formed by x; and its neighboring vertices (Fig 3).
Although the volume of the tetrahedron formed by the
immediate neighbors reflects local shape information, the
volumes of the tetrahedrons formed by the second or
higher level neighbors represent more global geometric
properties around x;. For each boundary landmark x;, the
volumes calculated from different neighborhood layers are
stacked into an attribute vector F(x;), which characterizes
the geometric features of x; from a local to a global fash-
ion. F(x;) can be further made affine-invariant as F(x;), by
normalizing it across the whole surface (26). By using
this attribute vector, the similarity between two boundary
landmarks x; and y;, respectively, in histologic and MR
images, can be defined by an Euclidean distance between
their normalized attribute vectors (26):

S,y =1 —|IF(x) — F(y) (1)

Internal Landmarks

Compared with the boundary landmarks, it is relatively
difficult to define the landmarks within the prostate cap-
sules, because the same anatomical structures might have
different appearances or shapes in the histologic and MR
images. In our study, inspired by the fact that clinicians
usually register histologic and MR images by matching
the internal bloblike structures (Fig 4) (i.e., gland tissues
containing fluid), these bloblike structures which are com-
monly available in both histologic and MR images are
used as the second type of landmarks (i.e., internal land-
marks) to guide the image registration.

There are two major challenges in detecting internal
landmarks (i.e., detecting bloblike structures from histo-
logic and MR images). First, the sizes of bloblike struc-
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Figure 3. Geometric attributes of a boundary landmark. For a boundary landmark x;, its geometric attributes are defined by the vol-
umes of the tetrahedrons formed by vertices x; and its neighbors nbr,(x)nbr,,, and nbr,,(x). Here, m; = |SI, (x)/3] and
m, = |SI, (x)*X23], (|.]defines the floor function) where Sll(x) is the number of vertices contained by /-th neighborhood layer of x;.

Figure 4. Corresponding bloblike structures in prostate histological and magnetic resonance (MR) images. (a) Prostate histologic im-
age. (b) Prostate MR images. Red arrows point to the corresponding bloblike structures commonly available in histologic and MR im-

ages.
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tures are highly variable within prostate images. Accord-
ing to scale-space theory (27), local structures only exist
as meaningful entities over a certain range of scale.
Therefore the selection of appropriate scales to detect
blobs of different sizes becomes a challenging problem.
Second, because of the enlargement or shrinkage of gland
tissues during the cutting procedure, the size of the same
blob can be different in histologic and MR images. To-
ward the establishment of correct correspondences be-
tween internal landmarks, it is necessary to define a scale
invariant similarity metric according to the sizes of blob-
like structures. Therefore, besides the spatial location, the
size of bloblike structure plays an important role for the
detection and matching of internal landmarks.

Accordingly, we employ a scale-space analysis method
to simultaneously detect the spatial locations and the sizes
of salient bloblike structures in histologic and MR im-
ages. Using the automatically detected size information, a
scale-invariant metric is thus defined to evaluate the simi-
larity between corresponding internal landmarks.

In the remainder of this section, we will first introduce
Lindeberg’s work (28), which aims to detect salient im-
age features with automatic scale selection. This work is
regarded as the theoretical foundation of our proposed
method. Afterward, the detection of internal landmarks
and the definition of the similarity between internal land-
marks will be introduced one by one.

Salient structure detection with automatic scale selec-
tion.—As argued previously, objects in the world appear
in different ways depending on the scale of observation.
However, the selection of appropriate scale to detect sa-
lient structure is not a trivial problem, because raw image
data usually doesn’t contain explicit information about what
image structures should be regarded as salient or what scales
are appropriate for treating “salient” structures. In Linde-
berg’ work (28), a systematic framework was proposed to
detect salient features with automatic appropriate scale selec-
tion by studying the evolution properties over scales of nor-
malized differential descriptors.

In this systematic framework, the scale-space representa-
tion is first constructed by convoluting the original signal (or
image) with Gaussian functions of different sizes. Given a
3D image, f(x, y, z) its scale-space can be represented as:

Lx,y,z; 8) = g(x,y,2; 8) * f(x,¥,2) (2)

1

(2 ar S2)3/2
tion is selected here as a convolution kernel, since it is

—(2+y2+22)/252

where g(x, v, z;5) = . Gaussian func-

stated as the unique kernel for generating a scale-space
within the class of linear transformations (29-31).

In analogy with the common fact that a maximal re-
sponse of differential descriptors over the spatial space
usually indicates the spatial location of a salient structure,
a maximal response over scale space indicates the scale
at which the local structure is most salient. To make the
response of differential descriptors scale invariant, Linde-
berg (28) proposed a normalized derivative operator as
defined next,

&= s0x (3)

This normalized derivative operator can be applied to
construct any differential descriptor. For instance, using
this normalized derivative operator, the normalized gradi-
ent of L(x, y, z; s) is calculated as,

Vool (X, ¥, 25 8) = VL(x,y,2; 8) = sVL(x, y,2; 5) (4)

By using a scale compensation factor s, the normalized
gradient becomes scale invariant, which facilitates the
comparison of gradients calculated from different scales.

Following this principle, the detection of salient local
structure with automatic scale selection can be accom-
plished by searching for local peak responses of a specific
differential descriptor over scale space. In this way, the
spatial location as well as the scale of the salient local
structure can be simultaneously obtained.

Internal landmarks detection.—Based on Lindeberg’s
systematic framework (28), we propose a method to de-
tect the spatial locations and the sizes of bloblike struc-
tures, which are considered as the internal landmarks to
guide the registration of prostate histologic and MR im-
ages in this study. As shown in Fig 5, our method con-
sists of three steps. First, a scale-space representation is
constructed for a 3D histologic or MR image according to
Eq 2. Second, the Laplacian of this scale-space function
L(x, v, z; s) is calculated. In particular, by following the
idea of normalized differential descriptors (28) described
previously, we calculate the normalized Laplacian, de-
fined as V2L = s°V’L = s*(L,, + L, + L), for scale-
invariant comparison. Finally, the local peak responses of
Laplacian over scale space are considered as the candi-
dates of salient bloblike structures, with the corresponding
locations and scales indicating the locations as well as the
sizes of these bloblike structures. The detailed relation-
ship between normalized Laplacian responses and the
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Figure 5. Schematic explanation of the scale-space analysis method. The local peak
responses of normalized Laplacian describe important properties of bloblike structures
and are used for selecting the candidates of internal landmarks.

properties of bloblike structures are mathematically de-
rived next.
Assuming an ideal blob locates at (xo, yo, z9) With the

. 3 . . .
size \/;so, it can be modeled by a Gaussian function as:

A
—=5€
3 ] 3/2

ES()

The scale-space representation of this blob f can be
thus obtained as:

(=024 =y02+ =022 (357) (5)

Sy, 2) =

A
Lx,y,z;8) = (3—)3/2

2 2
=55+ s
20

3
e ((x—x())2+()"—YU)Z‘*'(Z_Z())Z)/Z(ES%‘HZ)

(6)

At any scale s, the normalized Laplacian of L(x, y, z; s)
reaches its maximum at the location (xy, Yo, Z9), for example:

Q(S) = maX' (VinrmL(x’ Y, 25 S) | = | (VrzmrmL(xO? Yos 205 S) |

(x,y,2)

3As°
=52 )

3 5/2
(Es% + sz)

The maximum of Q(s) across scales is calculated by
differentiating Q(s) with respect to s,
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do 9As(st — 5%)

ds 3 i
(—s(z) + s2>
2

Because Eq 8 equals to zero when s = s, the normalized
Laplacian achieves its maximum at (xy, Yo, Zo; So) in the
scale-space, which indicates a blob detected with center
(x> Y0, zo) and size \/gso. In other words, if we detect a
peak at a location (x, Yo, o) With scale s, it indicates that
there might exist a blob centered at (x, yo, zo) With the

(&)

size of %so.

After finding the local maxima in normalized Lapla-
cian maps across different scales, the centers of bloblike
structures are detected and used as candidates for internal
landmarks. The expected internal landmarks are further
determined as follows. First, as the value of Laplacian
indicates the saliency of the blob structure, the local max-
ima in the normalized Laplacian map are thresholded, to
ensure the detection of salient bloblike structures. (In this
study, the detected candidates with Laplacian lower than
50 are discarded.) Second, average intensity within each
detected bloblike structure is computed. Because prostate
glands appear as bright blobs in histologic and MR im-
ages, dark blobs are excluded from candidates set. Third,
the extremely flat blobs are discarded to avoid the selec-
tion of blobs on the boundaries of prostate capsule.
Figure 6 gives an example of detected internal landmarks,
along with their corresponding scales represented by the
sizes of circles, in both histologic and MR images.
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Figure 6. Detection of internal landmarks. The internal landmarks are detected from prostate histological image (a) and magnetic reso-
nance image (b), respectively. The blue/red dots denote the centers of the detected bloblike structures and the sizes of the circles indi-
cate the salient scales of the bloblike structures.

Similarity definition of internal landmarks.—After the
internal landmarks are automatically detected, it is neces-
sary to define the similarity between internal landmarks in
histologic and MR images to determine the correspon-
dences between them. Because the registration of prostate
histologic and MR images is actually a multimodality
registration problem, the similarity between two internal
landmarks in histologic and MR images is defined by nor-
malized mutual information (NMI) (32), which is robust
to size changes of images. However, the evaluation of
NMI in our study has four differences compared with
traditional NMI-based registration methods.

First, according to the investigation in (24), two struc-
tureless image patches might have high mutual informa-
tion even if they are statistically independent. To avoid
this problem, in our method, NMI is evaluated only in the
local spherical patches around the internal landmarks un-
der comparison, as the image patches around internal
landmarks are generally highly structural.

Second, because the sizes of corresponding blobs can
be different in histologic and MR images from distortion
and cutting artifact, the sizes of local spherical patches
around each internal landmark are normalized according
to the detected sizes of the internal landmarks. In this
way, the similarity between internal landmarks in histo-
logic and MR images becomes scale-invariant.

Third, to capture rich image information around each
internal landmark for determining its corresponding land-

marks in the other modality image, NMI calculated from
multiple local patches with different sizes around land-
marks are integrated to measure the similarity between
internal landmarks.

Last, the local spherical patches of two internal land-
marks under comparison are allowed to be rotated to
achieve maximal NMI. The maximal NMIs are used to
define the similarity.

In summary, assuming two internal landmarks « and v
have respective scales s, and s,, their similarity can be
mathematically defined as:

M(u,v)

ul sll
= max > NMI V(u,i-su),T(V(v,i-sv);—,A9>

—a=Af=ai=1 v

)

Where V(u, R) denotes a spherical local patch around the
landmark u with the radius R. T(V; s, A6) is the transfor-
mation operator with a scaling factor s and a rotation fac-
tor Af. The variable i is the size factor of the local patch
where NMI is calculated, and N is the total number of
multiple local patches used. NMI{ -, - } denotes the nor-
malized mutual information between two same-sized
spherical volume images. (A@ = 7/8 and N = 3 in this
study)
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Overall Similarity Function

After defining the similarity between same-type land-
marks in the previous paragraph, we can design an over-
all similarity function to integrate the similarities between
same-type landmarks and the smoothness constraints on
the estimated transformation between histologic and MR
images. By maximizing this overall similarity function,
the correspondences between same-type landmarks and
the dense transformation between histological and MR
images can be simultaneously obtained.

Assuming the automatically detected boundary land-
marks and internal landmarks are {x | i = 1/} and
{u;1j = 1--J} in MR image, and {y; | k = 1-+K} and
{v; 'l = 1--L} in histologic image. The correspondences
between the boundary and the internal landmarks are re-
spectively described by two fuzzy correspondence ma-
trixes A and B (10):

A= {aik}
subject to
I+1 K+1
{Eaik=1(k= LK) Dag=1G=1,---,I);
i=1 k=1

e o, 1]} (10)

and
= {bjl}
subject to
J+1
{Eb,,:m: 1, L)
J=1
L+1
by=1(G=1,---,0);b,€]0, 1]} (11)
=1

It is worth noting that a; and bj; have real values between
0 and 1, which denote the fuzzy correspondences between
landmarks (10). Also, an extra row (i.e., {“y4)k} or
{by+1y1}) and an extra column (i.e., {“k+1)} or {bjr+1)})
are added to each correspondence matrix (i.e., A or B) for
handling the outliers. If a landmark cannot find its corre-
spondence, it is regarded as an outlier and the extra entry
of this landmark will be set as 1.

The transformation between histologic and MR images
are represented by a general function %, which can be
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modeled by various function basis (e.g., multiquadratic
(33), thin-plate spline (34), radial basis (35,36), or
B-spline (37,38)). In this study, we choose thin-plate
spline as the transformation basis.

Given the definitions of correspondences matrixes and
transformation function, the overall similarity function
can be defined as:

I K J L
maxE(A, B, h) :max{ {aE > auSe y) +BY, X byM(u;, vl)}

AB,h AB.h i=1 k=1 i=11=1

- A[E > awD(x; h(y)) + >y > byD(uy, h(v) + \|W(h>||2}

i=1 k=1 =11=1

I K J L
[ (E E a; log a,k-i-z E bj log b,-,)

i=1 k=1 j=11=1

Here, matrixes A and B are the fuzzy correspondences
matrixes subject to Eq 10 and 11, and & denotes the
transformation between histologic and MR images. The
two terms in the first square bracket denote the similarity
between landmarks, where S(-,-) and M( -, -) are the
similarity between boundary landmarks and the similarity
between internal landmarks, as defined in Eq 1 and 9,
respectively. The three terms in the second square bracket
jointly place smoothness constraints on the transformation
h. D( -, -) denotes the Euclidean distance between two
points, and |W(h)|? is a smoothness measurement of 4. In
our study, because thin plate spline is selected to model
the transformation 4, the smoothing term is the “bending
energy”’ of the transformation /4, for example:

A AR A

2 __ - - _

el= fff Kaxz) ’ <6y2> T 9z’
ah '\ 7h\’ 9*h

+2 +2 +2

dxady dx0z dyaz

The four terms in the third square bracket are used to
direct the correspondences matrixes A and B converging

to binary (39). With a higher 7, the correspondences are
forced to be more fuzzy and become a factor in “convexi-

2
) }dxdydz (13)

fying” the objective function. Although 7 is gradually
reduced to zero, the fuzzy correspondences become bi-
nary (10).

Compared to Chui’s work (10), which aims to nonrig-
idly match landmarks based on their spatial relations, our
registration framework incorporates the geometric and
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Figure 7. Correspondences between internal landmarks. The correspondences between internal landmarks in histologic image (a) and
magnetic resonance images (b) are shown by color crosses. Crosses with the same color denote the corresponding internal landmarks.

image features of landmarks. The importance of integrat-
ing image similarity for correspondence detection is also
demonstrated elsewhere (36), when registering diffusion

tensor images of individual brains.

The overall similarity function can be maximized by
an alternating optimization algorithm (10) that succes-
sively updates the correspondences matrixes A and B, and
the transformation function /4. First, with the fixed trans-
formation 4, the correspondence matrixes between land-
marks are updated by maximizing the terms in the first
and the third square bracket of Eq 12. The updated
correspondence matrixes are regarded as the temporary
correspondences between landmarks. Second, with the
fixed temporary correspondence matrixes A and B, the
transformation function % is updated by maximizing
the terms in the second square bracket of Eq 12. The
two steps are alternatively repeated until there are no
update of the correspondence matrixes A and B. It is
worth noting that A in Eq 12 decreases with the
progress of iterations, which means less and less
smoothness constraints are placed on the transforma-
tion between histologic and MR image. In this way, a
few sharp transitions of deformation are allowed in
local regions with cutting artifacts.

By maximizing Eq 12, the correspondences between
same-type landmarks and the transformation between his-
tologic and MR images are simultaneously estimated. The
correspondences established between internal landmarks

after maximizing the overall similarity function are shown
in Fig 7.

RESULTS

In this section, a set of experiments are presented to
validate the performance of our proposed registration
method. For comparison, three different registration meth-
ods are tested in every experiment. The three registration
methods are: 1) Method 1, which is an affine registration
algorithm, called FLIRT (40), using global mutual infor-
mation as similarity definition; 2) Method 2, which only
uses boundary landmarks to guide the registration; 3)
Method 3 (ie, our proposed method). (In generating the
experimental results, the parameters in Eq 12 are o =
0.5, B = 0.5. A, 7, and ¢ are three dynamic parameters
that are initially set as 1 and decrease to 0.05 with the
progress of iterations.)

Data Preparation

Five pairs of histologic and T2-weighted MR images
of radical prostatectomy specimen are used as the valida-
tion dataset. The data preparation is the same as the pro-
cedure reported in (7). First, the prostate glands are em-
bedded in 2% agar (30 mM NaCl) at 50°C and cooled to
4°C to solidify agar in a small Plexiglas box. The prostate
gland is then placed on a phased array endorectal coil for
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Table 1

Average Distances Between the Prostate Capsule Surfaces
in Magnetic Resonance Images and in Warped

Histologic Images

Method 1 (mm)  Method 2 (mm)  Method 3 (mm)

Subject 1 0.92 0.66 0.62
Subject 2 1.02 0.78 0.83
Subject 3 0.97 0.61 0.61
Subject 4 0.95 0.65 0.63
Subject 5 1.03 0.70 0.72
Mean 0.98 0.68 0.68

Method 1: mutual information based affine registration method.
Method 2: method using only boundary landmarks. Method 3: the
proposed method.

imaging with a 4T MR imager (GE Systems). A 6-cm
field of view is used for imaging the specimens. Next, the
histologic slices are obtained by using a rotary knife to
cut serial sections of the embedded gland starting at its
square face. (To facilitate the cut procedure, the prostate
gland is quartered.) Each section is 4 um thick and the
interval between neighboring sections is 1.5 mm. The
4-um thick histologic sections are scanned using a whole
slide scanner. Finally, the four quarters of each slice are
manually aligned using Adobe Photoshop. MR and histo-
logic images are resampled to be 256 X 256 X 64 with
the voxel size 0.15 mm X 0.15 mm X 0.75 mm.

Experiments to Register Anatomic Structures
of Prostates

In both histologic and MR images, prostate glands
are manually delineated by an expert. (It is worth not-
ing that the prostate glands can also be delineated by
automatic segmentation methods—e.g., morphologic
operators and deformable models, which make the
whole registration procedure fully automatic.) By regis-
tering the histologic and MR images using a registra-
tion algorithm, the prostate gland in the histologic im-
age can be warped to the MR image space. The accura-
cies of different registration methods are compared by
calculating the volume overlay error and the average
surface distance between prostate glands in warped his-
tologic images and MR images. As shown in Tables 1
and 2, by using our proposed method, the average dis-
tance between prostate capsules is 0.68 mm and the
average volume overlay error is 6.08%, which is better
than those achieved by the FLIRT method. It is worth
noting that, in terms of average distances and volume
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Table 2
Volume Overlay Error Between the Prostate Glands in
Magnetic Resonance Images and in Warped Histologic Images

Method 1 Method 2 Method 3
Subject 1 8.6% 5.8% 5.1%
Subject 2 9.3% 6.8% 7.2%
Subject 3 7.5% 5.3% 5.3%
Subject 4 8.1% 5.0% 5.3%
Subject 5 9.3% 7.0% 7.7%
Mean 8.6% 6.0% 6.1%

Method 1: mutual information based affine registration method.
Method 2: method using only boundary landmarks. Method 3: the
proposed method.

Table 3
Average Distances Between Manually and Automatically
Labeled Corresponding Landmarks

Method 1 (mm)  Method 2 (mm)  Method 3 (mm)

Subject 1 1.31 1.03 0.77
Subject 2 1.81 1.05 0.97
Subject 3 1.25 0.97 0.76
Subject 4 1.43 1.09 0.81
Subject 5 1.53 1.03 0.87
Mean 1.47 1.03 0.82

Method 1: mutual information based affine registration method.
Method 2: method using only boundary landmarks. Method 3: the
proposed method.

overlay errors, which are used to mainly evaluate the
boundary registration error, the results achieved by our
method are similar to those obtained by the method
using only boundary landmarks. However, our method
produces more accurate registration for internal struc-
tures of prostate, which is demonstrated next.
Registration accuracy is further evaluated by using
anatomic landmarks inside the prostate capsules. In this
experiment, the corresponding anatomic landmarks in his-
tologic and MR images are manually defined by an ex-
pert. By registering the histologic and MR images, the
correspondences can be automatically established for any
points in the histologic and MR images, including the
manually defined landmarks. In Table 3, the average dis-
tances between the manually labeled corresponding land-
marks and the algorithm-labeled corresponding landmarks
are presented to compare the performance of the afore-
mentioned three registration methods. Using our registra-
tion method, the average distances is 0.82 mm, which is
better than the results by the registration method using
only boundary landmarks and the FLIRT registration
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Figure 8. Comparison of warping histologic images to match with magnetic resonance (MR) images by three different registration
methods. Two red points and a red region in (a) denote the manually labeled landmarks and cancerous region in an MR image, respec-
tively. For comparison, those red points and the boundary of cancerous region are repeatedly displayed in three warped histological im-
ages (b-d) by three registration methods (ie, Methods 1, 2, and 3, respectively). The blue points in each of three warped histologic im-
ages (b-d) are the warped landmarks manually labeled in original histologic image, as correspondences to those red landmarks in MR
image. The dark region in each warped histologic image denotes the warped version of the manually labeled cancerous region in the

histologic image.

method. Figure 8 visually demonstrates the performance
of three different registration algorithms, which indicates
that our method produced the best results in establishing
correspondences for landmarks. This experiment demon-
strates the importance of using internal landmarks to
guide the deformable registration.

Experiments to Warp Ground-Truth
Cancerous Region

As argued in Section 1, the objective of our study is to
warp ground-truth cancer information from prostate histo-
logic images to MR images. Using a registration method,
the ground-truth cancer information in the histologic im-
age can be automatically warped to the MR image, there-
fore automatically labeling the cancerous regions in MR
images. In this experiment, to evaluate the performance of
different registration methods in labeling cancerous re-
gions, cancerous regions in both histologic image and MR
image are first manually labeled by an expert. Then, we
can compute the overlay percentage of manually labeled
cancerous regions with automatically labeled cancerous
regions in MR images. Figure 8 visually demonstrates the
performance of three different registration algorithms in
warping ground-truth cancer information of histologic
image to MR image. Our method produced the best re-
sults in automatically labeling cancerous regions in MR
images. The quantitative comparisons on five prostate
subjects are summarized in Table 4. Our method achieves
the volume overlay percentage between manually and
automatically labeled cancerous regions at the level of
79.1%, which is the best among all of three registration
methods.

Table 4
Volume Overlay Percentage Between Manually and
Automatically Labeled Cancerous Regions

Method 1 Method 2 Method 3
Maximum 82.9% 87.5% 88.3%
Minimum 55.9% 60.4% 64.1%
Average 71.6% 75.5% 79.1%

Method 1: mutual information based affine registration method.
Method 2: method using only boundary landmarks. Method 3: the
proposed method.

CONCLUSIONS

In this article, a novel method for the registration of
prostate histological and MR images has been proposed.
Instead of matching only the prostate boundaries or evalu-
ating the similarity in the entire images, our method uses
the automatically detected boundary landmarks and inter-
nal landmarks to guide the deformable registration of his-
tologic and MR images, therefore offering the robustness
to various distortions and cutting artifacts in histologic
images. In particular, the boundary landmarks are deter-
mined by analyzing the geometry of the surface of pros-
tate capsule, and the similarity between the boundary
landmarks in histologic and MR images is calculated by
the corresponding geometric features. The internal land-
marks are determined by using a scale-space analysis
method, which provides the saliency, location, and size of
the local bloblike structure. The similarity between two
internal landmarks in histologic and MR images is deter-
mined by normalized mutual information calculated from
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the local neighborhoods around the internal landmarks
under comparison. Finally, the correspondences among
the automatically detected landmarks and the dense trans-
formation between histologic and MR images are simulta-
neously determined by maximizing an overall similarity
function, which integrates the similarities between land-
marks and the smoothness constraints on the estimated
transformation between histologic and MR images.

Experimental results have shown that our proposed
method can register anatomic landmarks within prostate
capsules at a relatively accurate rate. Also, it can auto-
matically label cancerous regions in MR image by using
the cancerous regions reliably detected in histologic im-
ages, thus facilitating us to learn the signature of cancer-
ous tissues in MR images from a sufficient number of
samples in the future. This is important for achieving im-
age-based optimal biopsy using patient-specific informa-
tion. Moreover, although the method is particularly de-
signed for our computer-aided biopsy system, it could be
actually applied to various prostate related clinical stud-
ies, since the registration of histologic images and MR
images builds a bridge between microstructural informa-
tion (histologic images) and macrostructural information
(MR images). It paves the way to the identification of
geometric and texture features of microscopically defined
prostate structures in prostate MR images.

The future work of this study lies in three aspects.
First, because of the limitation of the available datasets,
our proposed method is only validated using ex vivo MR
images. Although the appearances of prostates might be
different in ex vivo and in vivo MR images, we expect
our method can achieve similar registration accuracy on
in vivo MR images, because boundaries and internal
gland structures of prostates are visible in high-resolution
in vivo MR images as well. We plan to validate our
method using in vivo MR images in the future. Actually,
there is another potential way to register histologic and in
vivo MR images, which consists of two steps: 1) register
histologic and ex vivo MR images and 2) register ex vivo
MR and in vivo MR images. Based on the assumption
that ex vivo and in vivo MR images of the same patient
share similar appearance, they are easily to be registered.
In this way, the histologic image can be eventually well
registered with the in vivo MR image. The study of the
histologic and in vivo MR images registration is one of
the important tasks of our future work. Second, the exper-
iments presented in this article are based on manual seg-
mentation of prostates. However, prostate boundaries can
actually be delineated from the histologic and MR images
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automatically. Because histologic and ex vivo MR images
have relatively simple background, prostate boundaries
can be automatically delineated by thresholding and mor-
phologic operators. For in vivo MR images that have
more complicated background, we plan to extend our pro-
posed method (41), which has been successfully used for
the segmentation of prostate ultrasound images. Third,
considering the fact that cancerous regions commonly
available in both histologic and MR images provide an-
other important clue for the registration, a joint registra-
tion and cancer identification framework, which aims to
increase the performance of both registration and cancer
identification in MR images, is under investigation.
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