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A high-dimensional shape transformation posed in a mass-preserving

framework is used as a morphological signature of a brain image.

Population differences with complex spatial patterns are then

determined by applying a nonlinear support vector machine (SVM)

pattern classification method to the morphological signatures.

Significant reduction of the dimensionality of the morphological

signatures is achieved via wavelet decomposition and feature

reduction methods. Applying the method to MR images with

simulated atrophy shows that the method can correctly detect subtle

and spatially complex atrophy, even when the simulated atrophy

represents only a 5% variation from the original image. Applying this

method to actual MR images shows that brains can be correctly

determined to be male or female with a successful classification rate of

97%, using the leave-one-out method. This proposed method also

shows a high classification rate for old adults’ age classification, even

under difficult test scenarios. The main characteristic of the proposed

methodology is that, by applying multivariate pattern classification

methods, it can detect subtle and spatially complex patterns of

morphological group differences which are often not detectable by

voxel-based morphometric methods, because these methods analyze

morphological measurements voxel-by-voxel and do not consider the

entirety of the data simultaneously.
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Introduction

Modern tomographic imaging methods are playing an increas-

ingly important role in understanding brain structure and func-

tion, as well as in understanding the way in which these change

during development, aging and pathology (Davatzikos and

Resnick, 2002; Giedd et al., 1999; Resnick et al., 2003; Shen
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et al., 2001; Sowell et al., 2002). Information obtained through

the analysis of brain images can be used to explain anatomical

differences between normal and pathologic populations, as well

as to potentially help in the early diagnosis of pathology

(Arenillas et al., 2002). For example, subtle patterns of brain

atrophy and changes in brain physiology in individuals with no

clinical symptoms could prove to be early predictors of the

development of dementia (Brown et al., 2001; Hyman, 1997;

Weiner et al., 2001). Interventions at early stages of a disease are

often more effective than at later stages (Lamar et al., 2003).

Therefore, developing methods for early diagnosis of subtle

anatomical and physiological characteristics of individuals at high

risk for disease are becoming increasingly important, as pharma-

ceutical interventions are being developed concurrently.

Brain diseases, including Alzheimer’s disease (AD), introduce

tissue loss that is believed to be regionally specific (Bobinski et

al., 1999; Braak et al., 1998; Csernansky et al., 2000; DeLeon et

al., 1991; deToledo-Morrell et al., 1997; Freeborough and Fox,

1998; Golomb et al., 1993; Gomez-Isla et al., 1996; Hyman et al.,

1984; Jobst et al., 1994; Thompson et al., 2001). Such spatial

patterns of atrophy are confounded by atrophy due to normal

aging (Resnick et al., 2000; Sullivan et al., 2002), which also

occurs in patients along with additional pathological processes.

Although functional changes can often be identified early in the

disease process (Morris et al., 1989), different pathologies can

result in similar functional changes, making differential diagnosis

and treatment decisions difficult. Moreover, imaging-based struc-

tural measurements of the medial temporal lobe have been shown

to increase predictive accuracy for clinical outcomes above that

of cognitive dysfunction (Visser et al., 2002). Several groups

have also shown that temporal lobe measurements predict AD in

patients with mild cognitive impairment (Jack et al., 1989;

Killiany et al., 2000). These brain changes are being explored

as possible surrogate markers of therapeutic efficacy of potential

treatments to stop the progression of AD. Therefore, more

advanced methods of morphometric analysis could potentially

help diagnose the disease even earlier, before measurable func-

tional loss occurs and at a stage in which treatment might be

more effective, and may help monitor the efficacy of interven-

tions in clinical trials. Similar challenges to those understanding

and diagnosing dementia are faced in many other brain diseases.



Fig. 1. Hypothetical example in which an abnormality in the left or right

hemisphere cannot be detected by examining the image characteristics or

the RAVENS maps at a single voxel (each axis corresponds to measure-

ments from a single voxel in the respective hemisphere). The normal

population (unfilled circles) and the populations with abnormality

(asymmetric atrophy) overlap along each axis. However, when both

measurements are examined together, the populations are separable.
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For example, despite its devastating impact, schizophrenia affects

the brain structure in a rather subtle way, and is difficult to

reliably detect or precisely characterize in the presence of inter-

individual morphological variability (Haller et al., 1996).

To develop an accurate predictor of pathology from a set of

volumetric images, two issues need to be addressed. First, an

image analysis methodology needs to extract the most relevant

information from the images. Second, this information needs to

be supplied to a pattern classification method that determines

whether the image information implies a high likelihood of the

development of disease. Although these two issues are rather new

to the neuroimaging field, they are standard problems that have

been studied extensively in the computer vision and pattern

recognition literatures. However, there are unique characteristics

to this problem that pose new challenges. In particular, the high

dimensionality of volumetric brain images, the complexity of

brain anatomy and inter-individual variability are a few of these

challenges.

One of the traditional ways of analyzing brain images is

based on the definition of regions of interest (ROIs) according

to some a priori hypothesis, and statistically analyzing the

volumes of these ROIs. This approach is limited in that a good

a priori hypothesis must be formed before meaningful measure-

ments can be obtained. Although this is sometimes possible, in

general, it limits the ability of a study to identify new and

previously unexplored relationships between structural changes

and disease. Moreover, manual definition of ROIs often suffers

from low repeatability as it is cumbersome and therefore not

practical for large-scale investigations. A new class of methods

for morphological analysis of brain images has emerged during

the past decade which is based on voxel-wise measurements,

with no a priori hypothesis (Ashburner et al., in press; Csernan-

sky et al., 2000; Davatzikos et al., 1996, 2001; Freeborough and

Fox, 1998; Good et al., 2002; Sowell et al., 1999a,b; Thompson

et al., 2001). The statistics of a morphological variable are

determined for a normal population and are compared against

individual measurements or group statistics of another popula-

tion (e.g., one with a particular disease). Voxels that differ from

the normal population are flagged and grouped into clusters

reflecting pathology.

A fundamental limitation of this kind of approach is that

voxel-wise statistical comparisons have limited power to identify

subtle differences between two populations, as is often the case in

practice. This means that morphological measurements considered

individually on each voxel tend to display great overlap across

different populations, thereby rendering classification impossible.

However, if one considers the collection of morphological meas-

urements over the entire brain, very powerful and sensitive

classifiers can be developed (Miller et al., 1997). We describe

such a method in this paper. Intuitively speaking, if one were to

zoom into an individual voxel in the brain and try to determine

whether that voxel is abnormal, the examiner would be chal-

lenged, unless information from the vicinity of that voxel, from

the opposite hemisphere, or from other brain regions is also

presented to the rater. In our approach we use the entire set of

morphometric measurements obtained from every single voxel in

the brain simultaneously, and build a high-dimensional morpho-

logical classifier from them. In the following section we describe

in detail the set of measurements that is extracted from the

images and the classifier that is trained on many pre-classified

training samples.
Methods

Limitations of voxel-based morphometric methods

A variety of voxel-based, deformation-based and tensor-based

morphometric analysis methods has become common approaches

to computational anatomy during the past several years, as is

reflected by the sample of references in the Introduction. They

are based on a spatial transformation that places images into a

stereotaxic space, followed by a voxel-wise statistical analysis of

the spatial distribution of different tissues (Good et al., 2002), of

the properties of the spatial transformation itself (Davatzikos et al.,

1996; Miller et al., 1997; Thompson et al., 2001), or of hybrid

measurements of the residual image and the spatial transformation

(Davatzikos et al., 2001). The spatial normalization registers image

data from different subjects into the stereotaxic space, so that,

ideally, the same spatial locations correspond to the same anatom-

ical structures. If that is the case, then for each voxel in the

stereotaxic space, statistics of different populations can be calcu-

lated and used to determine population differences. The voxel-wise

statistical analysis is typically based on linear statistics and on

assumptions of underlying Gaussian distributions. This is one of

the limitations of current approaches, although not the most

important one, as described next. These methods examine the data

voxel by voxel, and do not take full advantage of interrelations that

might exist among measurements on different voxels. A very

simple example that demonstrates this is shown in Fig. 1, which

is a hypothetical plot of the volume of a structure in the right vs.

the left hemisphere. Inter-individual variability would typically

cause a spread of the statistical distribution of this volumetric

measurement along the diagonal, implying that this structure can

be large or small in normal subjects, but left and right parts of the

structure are expected to have similar volumes. If a pathology

affects one hemisphere (e.g., lateralized atrophy), the respective

statistical distribution of the volumetric measurements will be

shifted away from the diagonal. However, a voxel-based measure-

ment (which corresponds to the value along either axis) would not

be able to differentiate normal from abnormal. That is, both the left

and the right volumes of a pathological brain can be within the

normal range; it is the asymmetry (i.e., the two measurements

examined simultaneously) that is able to distinguish pathology

from normal anatomy in this hypothetical example.



Z. Lao et al. / NeuroImage 21 (2004) 46–5748
Although this is a very simplistic example, it demonstrates that

voxel-wise statistics are fundamentally limited by the fact that

different populations are most likely to have significant statistical

overlap on individual voxels, which would make their differenti-

ation via a voxel-wise analysis impossible. The interrelations

among measurements on different voxels are very important in

separating two or more populations, and therefore in predicting

whether a particular individual has or is likely to develop brain

pathology. These interrelations among voxel-wise morphological

measurements can be examined by statistical methods operating on

the very high dimensional space formed by measurements from all

voxels together. Although linear multivariate methods have been

previously proposed in the literature (McIntosh et al., 1996), we

have found that nonlinear methods result into much better charac-

terization of population differences. Our approach is based on the

use of nonlinear support vector machines (SVM) (Burges, 1998),

which have been shown to be one of the most powerful machine

learning methods, in conjunction with the entire collection of

morphological measurements from all voxels. These measurements

are obtained via a shape transformation that warps an individual

brain image to a template, thus forming a morphological signature

of the individual brain. We briefly summarize this shape transfor-

mation next. Details can be found in Shen and Davatzikos (2002,

2003).

Shape transformation using HAMMER

In this paper, we adopt an approach called hierarchical attribute

matching mechanism for elastic registration (HAMMER), which

was published in detail by Shen and Davatzikos (2002) and briefly

summarized here. HAMMER addresses two of the limitations that

are common among high-dimensional shape transformation meth-

ods. First, similarity of image intensities does not necessarily imply

anatomical correspondence. For example, mapping a gray matter

(GM) point of the precentral gyrus to a gray matter point of the
Fig. 2. Results using the HAMMER warping algorithm. (A) Four representative

sections from the image formed by averaging the 18 images warped by HAM

representative case, its warped configuration using HAMMER, the template and th

and D4 is indicative of the registration accuracy. The red crosses in D1–D4 are
adjacent postcentral gyrus does not follow a valid anatomical

correspondence, although it does map points of similar image

intensities to each other. To address this limitation, HAMMER uses

an attribute vector, that is, a collection of attributes that reflect the

anatomy around a particular voxel from a local to a global scale. If

the attribute vector is rich and distinctive enough, it can differen-

tiate among anatomically different points that have similar image

intensities, and therefore greatly reduce the likelihood of erroneous

matches such as the one described above. The second limitation of

high-dimensional transformation methods is the existence of nu-

merous local minima in the cost function being optimized (e.g., the

similarity between warped and template images), which correspond

to poor matches that cause the termination of iterative algorithms.

HAMMER uses a hierarchical sequence of transformations of

increasingly local nature, starting with matches that are relatively

unambiguous, because they are based on voxels with the most

distinctive attribute vectors. Fig. 2 shows a representative example

of the performance of HAMMER on MR images of elderly

subjects from the Baltimore Longitudinal Study of Aging (BLSA)

(Resnick et al., 2000). This figure shows a very high accuracy in

registration of images from different individuals, which is reflected

by the anatomical detail of the average image. For some special

instances where HAMMER has difficulty finding the correct

correspondence, as described in the Discussion section, the RAV-

ENS map can still preserve the subject’s volume before and after

warping, as described in the following section.

RAVENS mass-preserving framework

In principle, one can use the shape transformation that warps

individuals to the template to perform statistical analysis on

morphological variables. This is certainly true when the shape

transformation is extremely accurate and so can capture the finest

details of an individual morphology. In practice, however, this is

not necessarily the case. Shape transformations are subject to errors
sections from 18 MR images of the BLSA database. (B) Representative

MER to match the template shown in C. (D1–D4) 3D renderings of a

e average of 18 warped images, respectively. The anatomical detail seen in B

identically placed to allow visualization of point correspondences.



Fig. 3. Schematic representation of the mass-preserving framework of the

RAVENS maps. A shape transformation (A) that causes contraction of the

structure as the transformation maps it to a stereotaxic space increases the

tissue density within the structure, so that the total amount of tissue is

preserved. The transformation (B) is different, and it might correspond to a

result with higher error. However, the total amount of tissue is preserved

under both transformations (A and B). For example, the integral of the

RAVENS density map within the outlined region is identical for both A and

B, and identical to the volume of this region in the original structure. If the

corresponding shape transformations were compared instead of the

RAVENS maps, then the results would be dramatically different. This

shows schematically the relative robustness of the RAVENS approach.

Fig. 4. Schematic representation of a linear (solid line) and a nonlinear

(dotted curve) SVM classifier. The filled and unfilled circles correspond to

feature vectors of training samples from two different populations. A

hyperplane (or hypersurface) is determined that optimally separates the two

groups of samples. SVM classifiers are determined only by samples that are

close to the interface between the two populations (called support vectors),

and not by other samples that are further away. This allows fine-tuning of

the classifier to the subtle details of the interface between the two groups. In

our approach, each sample is a high-dimensional vector incorporating the

values of the three tissue density maps on each voxel within the brain.

Z. Lao et al. / NeuroImage 21 (2004) 46–57 49
introduced by limitations of current deformable registration meth-

ods, and by the fact that inter-individual differences in brain

morphology simply make it difficult, or in many cases impossible,

to define anatomical correspondence. Such errors and ambiguities

in the shape transformation can significantly affect subsequent

statistical analysis.

To partly overcome this limitation, we have adopted the frame-

work of mass-preserving shape transformations, described in detail

by Davatzikos (2001), Davatzikos et al. (2001) and Goldszal et al.

(1998). In this framework, we warp individual images to conform

with a template, while the total amount of tissue in any arbitrarily

defined region is preserved. This is accomplished by increasing or

decreasing the density of the tissue whenever the shape transforma-

tion contracts or expands the tissue, respectively. This approach

guarantees that the total mass within the region is preserved. This is

shown schematically in Fig. 3.

The results of the mass-preserving shape transformation are

three tissue density maps, one for the gray matter (GM), one for the

white matter (WM) and one for the cerebrospinal fluid (CSF). We

collected the values of these three maps on all voxels within the

brain into a long vector, which we call a brain morphological

signature (BMS). We used BMS to perform morphological classi-

fication in a high-dimensional space.

Support vector machine (SVM)-based classification

SVM has emerged as one of the most powerful pattern classifi-

cation methods during the past decade. A good reference for SVM

classifiers is Burges (1998). For the sake of completeness of this

paper, we now summarize the basic principles of SVM.We first start

with the linear case, which is simpler to describe.

Assume that we want to build a linear classifier that best

separates two populations in high-dimensional space. This classi-

fier is described by a hyperplane whose position and orientation

must be determined, with the help of a pre-classified training set, as

shown in Fig. 4.
The optimal parameters of the dividing hyperplane are deter-

mined via an iterative constrained quadratic optimization scheme, in

which the training samples of one group are forced to be on one side

of the hyperplane and the samples of the other group are forced to be

on the opposite side. This problem is solved via a variety of

nonlinear programming techniques (Burges, 1998), which results

in many ‘‘active’’ constraints, that is, constraints that determine the

solution. These constraints correspond to samples that are very close

to or are on the interface between the two groups. These are called

‘‘support vectors.’’ The rest of the training samples do not contribute

to the expression of the dividing hyperplane. This reveals a very

important aspect of SVM, which is one of the reasons for its

effectiveness as a classifier. The hyperplane is determined only by

a relatively small number of samples that are close to the opposite

group; the samples that are far away have no influence on the results,

because it is clear as to which group they belong. The classifier

inherently focuses on the subtleties of the morphological differences

between the two groups and not on gross differences that are not

difficult to detect, and is therefore more effective. In practice,

however, it is impossible to prevent the two groups from overlapping

to some degree. Therefore, the constraints are relaxed to permit some

training samples to be on the wrong side of the hyperplane.

Linear classifiers have only limited power to separate groups,

particularly when the statistical distributions in the high-dimen-

sional feature space are complex. In our experiments, we have

verified that this is indeed the case with the kinds of problems that

are being considered. Therefore, we use nonlinear SVM classifi-

cation which is based on the same principle, but it is not based on a

hyperplane that divides the two groups of samples, but rather on a

more general hypersurface (see dotted curve in Fig. 4). This is

accomplished by mapping the data to a high-dimensional space

where the classification is achieved via a linear classifier as

described earlier, and then by mapping the results back to the

original feature space. This results in a non-planar hypersurface

that adapts to an even greater degree to the subtleties of the

interface between the two groups, and is thus more effective.

Details about nonlinear SVM can be found in Burges (1998).
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Classification using the RAVENS maps

Our input to the SVM classifier is the morphological brain

signature, that is, the RAVENS maps of all tissues collectively.

Specifically, to perform morphological classification, we perform

the following steps:
1. RAVENS maps are smoothed via a 3D Gaussian filter, and the

resulting maps are downsampled by a factor of 4 in each

dimension. This reduces the number of variables that will be

used by the classifier by combining measurements from

neighboring voxels.

2. The resulting smoothed RAVENS values of the GM, WM and

CSF are concatenated into a long vector. Our segmentation

procedure of GM, WM and CSF employs a method based on

Markov random fields with inhomogeneity correction (Yan and

Karp, 1995). The vector is subsequently normalized to have unit

magnitude. Effectively, this normalizes for global brain size

differences. The resulting unit vector is the BMS. The

dimension of a typical RAVENS map is 256 � 256 � 124 in

voxels. The sizes of bounding boxes for WM and GM are

similar, around 180 � 140 � 123 in voxels while the size of

bounding box for VN is much smaller than that for WM and

GM, sometimes it can be negligible in calculating the dimension

of the feature vector. After downsampling by a factor of 4 in

each dimension, feature vector lengths for WM and GM are

48431 each. Concatenating the feature vectors for WM, GM and

VN, BMS ¼ ½WM GM VN� produces a brain morphological

signature, where WM; GM; VN are the feature vectors for

WM, GM and VN, respectively. Typically, a BMS has

dimensionality of order 105.

3. We train an SVM by providing the BMSs of many subjects. We

use a nonlinear SVM classifier by mapping the finite-length

brain signature data to a high-dimensional space via a Gaussian

kernel, as described by Burges (1998).

4. We apply the trained SVM classifier to a new subject. We

always test the SVM classifier on subjects not included in the

training set, as customary in classification methods.

Classification using ROIs obtained via warping a labeled atlas

Although the whole brain analysis achieved by including the

RAVENS values on every single voxel in the classification scheme,

in theory, is the most complete way of looking at the data, it

inevitably operates in a very high dimensional space (typically 104

to 105, after down-sampling the original RAVENS maps). It is

well-known that this makes a classifier vulnerable to noise,

particularly if only few training samples relative to the number

of voxels are available, which is the case when dealing with

medical images. For this reason, we also investigated alternative

ways of data representation, which are described in this and the

following subsections. In particular, we first used a region of

interest (ROI)-based approach by adopting a finely parcellated

brain image as a labeled atlas developed by Noor Kabani at the

Montreal Neurological Institute, including 101 ROIs. We then used

HAMMER to warp this atlas to individual subjects’ images,

thereby obtaining volumetric measurements of these ROIs for all

subjects. Fig. 5 shows 3D renderings of the labeled atlas and a

representative parcellation of an individual’s brain after the atlas

was warped to the individual.
Feature vectors that are composed of volumetric measure-

ments from these 101 regions are then used to train and test the

SVM classifier. The relatively more robust classification that

should be expected in this significantly lower-dimensional fea-

ture space is counterbalanced by the reduced spatial specificity

of this method (e.g., if only part of an ROI is affected by

disease, differences would not be apparent because the disease-

affected region is included in a larger ROI measurement).

Experiment 3 in the following Experiment section is based on

this method.

Classification using wavelet decomposition and feature reduction

of the RAVENS maps

In the previous two subsections, we presented two alternative

ways of representing morphometric measurements obtained from

the RAVENS maps. In the first method, the RAVENS maps were

downsampled to a relatively smaller number of variables than the

total number of voxels, and then they were used in a very high

dimensional classification scheme. In the second approach, a

relatively smaller number of ROI measurements were extracted

via warping of a labeled template to an individual. In this section,

we present a third approach, which combines the advantages of

each of the previous two approaches. It uses a wavelet decompo-

sition of the RAVENS maps, followed by an automated algorithm

for extracting the most pertinent features for classification param-

eters. The details are described next.

Wavelet decomposition

Wavelet decomposition has been used successfully in many

applications, including medical imaging. It is a very effective way

of representing image information in a hierarchical way, and it

offers the potential for significant reduction in the dimensionality

of the data. A good reference for the wavelet transform can be

found in Mallat (1989). We apply Daubechies wavelet decompo-

sition on the original RAVENS maps only once for each RAVENS

map image, thereby obtaining a scale-space representation of the

volumetric information provided by these maps. A typical wavelet

decomposition is shown in Fig. 6, whereas when one moves from

the top left to the bottom right one can see we have obtained more

localized and higher frequency information from that initially

collected from the RAVENS maps.

Feature reduction

Wavelet decomposition reorganizes the information provided

by the RAVENS maps in a hierarchical way, from relatively global

and low-frequency information to relatively localized and high-

frequency information. However, it does not reduce the dimen-

sionality of the data. Therefore, applying a classification algorithm

on wavelet decomposition would also be sensitive to noise.

However, due to its hierarchical nature, wavelet decomposition

of the RAVENS maps offers the possibility for significant data

reduction. We achieve this via an algorithm previously described in

the literature (Shen and Ip, 1999). In particular, a standard

variance-based feature discrimination technique, such as be-

tween-to within-class variance ratio (Devijver and Kittler, 1982),

is first employed to define the discrimination measure for each

wavelet feature as shown in Eq. (1).

QðCi;CjÞ ¼
gðrðCiÞ þ rðCjÞÞ
AmðCiÞ � mðCjÞA

ð1Þ



Fig. 6. A typical three-level wavelet decomposition of RAVENS map slice.

Fig. 5. (A) Parcellated brain image used as an atlas for the definition of ROIs. (B) Another individual’s image parcellated via a high-dimensional elastic

warping of the atlas on the left, using the HAMMER method. (C–D) One cross-section of the individual’s original MR image and the corresponding labeled

(segmented) image.
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where g = 3.0, m(Ci) and m(Cj) are means for class Ci and Cj, and

r(Ci) and r(Cj) are standard deviations of classes Ci and Cj.

The wavelet features are then ranked according to their dis-

crimination measures. Finally, a collection of the most pertinent

features is selected for image classification. This feature reduction

method is simple and computationally very efficient, although not

necessarily mathematically optimal, strictly speaking. The strictly

optimal way of data reduction would be by iteratively selecting

different sets of features and testing the SVM classification rate for

each of them, until the best feature set is found. This approach,

however, would clearly be computationally infeasible for our

problem. In our implementation, a set of 2000 of the most pertinent

features usually yields satisfactory results.

Displaying group differences

Although nonlinear classification methods are generally effec-

tive in resolving subtle and spatially complex group differences,

they do not easily lend themselves to intuitive interpretation of

the result, as opposed to statistical parametric maps of voxel-

based analysis. This problem is largely due to the nonlinearity of

the classifiers, which implies that group differences depend on

the morphology itself, and they cannot be summarized with a

single image. To further elucidate this issue, we construct a

hypothetical example: evaluating the risk of developing a clinical

condition, such as dementia, might depend not only on the rate of

change of the hippocampus and the entorhinal cortex, but also on

the size of these structures. For example, it could be that if

the hippocampus is relatively small, then the rate of change

might be a good predictor of risk of developing dementia,

whereas if the hippocampus is large, other morphological char-

acteristics might have a higher predictive value. This means that

one would need to display one image that reflects group dif-

ferences for all possible brain morphology. This is clearly not

possible in practice.

A second difficulty is introduced by the dimensionality reduc-

tion (feature selection) that takes place before pattern classification,

which is necessary for dealing with very high-dimensionality data,

such as 3D images (see ‘‘Feature reduction’’ above). For example,

as we discussed earlier, we select about 2000 features from the

wavelet decomposition of each RAVENS map. Because of this

feature selection process, we can no longer reconstruct the original
brain, but only certain aspects of it that are represented by this

limited set of variables.

To get around these problems and be able to display group

differences in a way that is not only quantitative, but also suitable

for interpretation of group differences determined quantitatively, as

a reference to Golland et al. (2001), we have developed the

following procedure:

1. For every ‘‘support vector’’, that is, for every brain that lies

close to the hypersurface dividing two groups, we follow the

gradient of the decision function until we reach the opposite

side of the hypersurface, which is entirely in the second group.

For example, in a male or female classification experiment, a

fraction of the male brains will be the ones that influence the

dividing hypersurface between the two groups. For each one of

these brains, following the gradient of the decision function

(which assigns brains to one group or the other) gives the fastest

path that will ‘‘make a male brain look like a female brain,

given the particular morphological characteristics of that

specific male brain’’. This path varies from brain to brain, due

to the nonlinearity of the classifier, as discussed above.
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2. From the paths determined in Step 1, apply the inverse wavelet

transform and construct images that highlight group differences

for each of these brains.

3. Average these group difference images for all support vectors so

that a single map can be constructed.

4. Find all local maxima of the clusters that are formed in Step 3;

these local maxima show the regions which are most

informative in terms of resolving group differences.

5. Overlay these local maxima on the brain image used as template

for anatomical reference purposes.

Of course, Step 3 could be omitted. However, in that case, one

would need to show one difference map for every single brain.
Experiments

In this section we provide experiments that demonstrate the

performance of our approach using magnetic resonance images of

healthy older adults who are participants in the Baltimore Longi-

tudinal Study of Aging (BLSA). These individuals range in age

from 56 to 85 and undergo yearly structural scans, among other

evaluations, using a standard SPGR protocol. Details about the

subjects and the image acquisition parameters can be found in

Resnick et al. (2000).

In summary, there are three classification schemes as described

in (1) ‘‘Classification using the RAVENS maps’’; (2) ‘‘Classifica-

tion using ROIs obtained via warping a labeled atlas’’; and (3)

‘‘Classification using wavelet decomposition and feature reduction

of the RAVENS maps’’, respectively. The first scheme used down-

sampled original RAVENS maps as features for classification; the

second scheme used ROI-based features for classification and the

third scheme used wavelet transformed RAVENS maps combined

with a feature selection scheme to select a set of most prominent

wavelet coefficients as features for classification. Experiment 2

used the first scheme; Experiment 3 used the second scheme;

Experiments 1, 4, 5 and 6 used the third scheme. Experiment 7 is

based on the result of the third classification scheme, but it also

used techniques described in ‘‘Display group differences’’.

Experiment 1: response in the absence of any effect

To test that there is no bias in our classifier, we tested the

hypothesis that under no effect, the response should be detection of

no group differences. Accordingly, we performed a random per-

mutation experiment. Specifically, we randomly assigned the 153

individual subjects to two different groups. Using the leave-one-

out method, we then tested our method. We repeated this exper-

iment using 20 random permutations. The average classification

rate was 48%, which agrees very well with our expectation that this

experiment should lead to a nearly ‘‘coin-toss’’ success rate (which

would be 50%).

Simulated atrophy

Weperformed two experiments (Experiment 2 andExperiment 3)

in which we simulated morphological effects in two different ways

on images from older adults of the BLSA study, thereby generating

a second set of the same number of images displaying systematic

morphological differences in certain parts of the brain. Our goal
was to test whether our classification method would correctly

discriminate between these two groups, providing results that

revealed brain differences in a systematic way.

Experiment 2

In our second experiment, we introduced systematic atrophy on

the RAVENS maps of 40 BLSA subjects by reducing the intensity

values of the RAVENS maps in a cubic region centered on a

manually selected voxel, as shown in Fig. 7. Since RAVENS map

uses a mass-preserving scheme via deforming the subject from its

own space to the space of the template, it is then straightforward that

reducing the intensity value with a certain region in the RAVENS

map is equivalent to reducing the volume of the corresponding re-

gion in the subject space. We introduced atrophy of 10%, 20%, 30%

and 40% within a cube of dimensions 19 � 19 � 19 mm3, then a

cube of 38� 38� 38 mm3 and finally a cube of 57� 57� 57 mm3.

We used the leave-two-out method, and trained a classifier on 38 of

these 40 images, then tested the classification result on the left out

two subjects. We repeated this procedure 20 times, each time leaving

two of the subjects out. Table 1 shows the resulting detection rates.

Experiment 3

Experiment 2 tested classification performance under the as-

sumption that a single region of atrophy is what separates the two

groups. In reality, morphological differences among groups exhibit

more complex spatial patterns. To test our classification scheme on

a more realistic case scenario which would reflect the strengths of

our ROI-based classification scheme described in a section named

‘‘Classification using ROIs obtained via warping a labeled atlas’’,

we systematically introduced morphological differences to 10

BLSA subjects in five different ROIs: for the purposes of this

simulation, the corpus callosum and the left and right lateral

ventricles were expanded, while the right temporal lobe and the

left hippocampus were contracted. We simulated three different

levels of expansion or contraction, changing those portions of the

brain in each group of 10 by 5%, 10% and 15%, respectively. In

other words, for each atrophy level, we generated two groups of 10

subjects each, which provided pairs of images that were otherwise

identical except for the morphologic differences in the five regions

noted above. We then used the leave-two-out method by training

our classifier on 18 subjects and testing it on the two left out, then

repeated this procedure for all subjects. We applied both the ROI-

based classification and the wavelet-based classification methods.

For the former, we used a total of 34 ROIs, all near and including

the five ROIs in which the atrophy was simulated. We thus tested

the classification accuracy that can be obtained using an ROI-based

version of our technique when a good hypothesis is available. The

resulting ROI-based correct classification rate was 95% (one

classification error in the 20 subjects) in the case where we

simulated a 5% expansion or construction, and 100% (0 mistakes

in the 20 subjects) the cases in which we simulated a 10% and a

15% simulated expansion or contraction. Using the wavelet-based

classification method, the accuracy was 100% for all levels of

atrophy, tested using the leave-two-out method as above.

Experiment 4: male–female classification

In this experiment, we tested whether our methodology can be

trained to classify whether a brain image belongs to a male or a



Table 1

Correct classification rates for Experiment 2

10% 20% 30% 40%

19 � 19 � 19 mm3 75% 80% 85% 90%

38 � 38 � 38 mm3 80% 82.5% 85% 92.5%

57 � 57 � 57 mm3 82.5% 87.5% 95% 100%

Different columns correspond to different levels of simulated atrophy.

Different rows correspond to different spatial extents of simulated atrophy.
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female individual. We used images from 153 BLSA subjects and

tested our method with the leave-one-out method. In particular, we

trained a classifier on 152 subjects each time, then tested it on the

left out subject, and repeated the experiment 153 times. The

resulting classification accuracy was 96.7%. It is notable that

global size of each tissue compartment was not one of the

parameters used in classifying images into males or females,

because the RAVENS maps are normalized to unity. Therefore,

the female and male brains differ not only in global size, which is a

well-known fact, but also in the pattern of spatial distribution of

GM, WM and CSF, as our results show.

Experiment 5: older–younger classification

In our fifth experiment, we tested our classification method

on a very difficult case, involving groups with brain structures

that heretofore belonged to seemingly inseparable groups. In

particular, we divided all 153 BLSA subjects for which we had

complete longitudinal scans into four groups, according to their

age: Group1 ( < 60 years old, 14 subjects), Group2 (60–68

years old, 62 subjects), Group3 (69–79 years old, 51 subjects;

note that we included individuals age 69 in Group3 due to the

large number at this age and our attempt to distribute subjects

across groups) and Group 4 (80 years old or older, 26 subjects).

We applied the wavelet decomposition and feature reduction

described in the Methods section, and derived a set of 2000

features per subject to be used for classification. The difficulty

in differentiating among these groups lies in the existence of

great interindividual morphological variability, which may con-

found one’s ability to detect age differences. Detecting signifi-

cant population differences in the presence of interindividual

variability is a relatively easier task if an adequately large

number of subjects are available, because significant differences

can be detected even if two populations are highly overlapping

provided that enough samples are available. However, classify-

ing an individual into one or another class with high certainty is

a much more difficult task unless large group differences are

present (e.g., as in disease). For example, Fig. 8 shows a 1D

schematic of measurements from two populations that would

yield very low P values reflecting systematic differences be-

tween the two groups. However, attempting to classify a subject

into one of these two groups will yield a very high classification
Fig. 7. (Left) RAVENS map of an individual (region inside the small

rectangle was selected for the atrophy simulation). (Right) RAVENS map

after 10% atrophy simulation within the highlighted rectangular area.
error without the presence of additional and more discriminative

measurements.

We tested the performance of our classification scheme on all

possible pairs of groups, and obtained a percentage of correct

classification rates, shown in Fig. 9. In Fig. 9, the numbers

associated with an arrow connecting two groups show the

respective classification rates obtained via the leave-one-out

method. The numbers in parentheses correspond to a related

but slightly modified experiment. Specifically, to obtain the

results in parentheses, we used images of these subjects obtained

4 years after the first acquisition to enhance the group differences.

For example, when comparing Group1 and Group2, we used the

Year 1 data of Group 1 and the Year 5 data of Group 2. In effect,

this provided an additional 4 years of age-related differences to

the brains studied. Average ages for each group in Year 1 and

Year 5 are shown in Fig. 9. As expected, the classification results

improved in general: it is clear, from Fig. 9, that the greater

the age difference between the two groups studied, the easier

it is to classify them by age with high certainty. For example,

Group 1 and Group 4, which are separated by more than 20

years, can be classified correctly by age group with a certainty of

approximately 97%.

To further test the performance of our classification method, 50

of the 153 subjects were randomly selected for testing, and the

remaining 103 subjects were used to develop a morphological

classification system against which to compare the 50 initial

subjects. In this case, we were able to determine the age of the

subjects with an accuracy rate of 90%.

Finally, to test the robustness of the pattern classification

technique with respect to a particular tissue classification method

used to classify images into GM, WM and CSF, we repeated the

experiments involving the leftmost and rightmost groups of Fig. 9

using a different tissue classification method (Pham and Prince,

1999). The resulting correct classification rate was 97.5%, that is,

identical to the result obtained via the other tissue classification

method (Yan and Karp, 1995). This bolsters our confidence that

group comparisons are fairly robust with respect to the tissue

classification method.

Experiment 6: self test

Throughout our experiments we used the leave-one-out-like

method to measure the classifications’ accuracy. It is important to

note that only when the test cases of the leave-one-out method are

not included can we get accurate estimates of the classification rate.

To illustrate this, we applied our methodology to the data consid-

ered in Experiment 5, which had resulted in a classification rate

between Group 1 and Group 3 of only 83% with the leave-one-out

method. When the SVM was trained and tested on the same set, the

accuracy was 100%. Fig. 10 shows the values of the classifier

function for each subject.



Fig. 9. Morphological classification success rates for groups of different

ages; average ages of the four groups are 58.14, 64.39, 72.78 and 82.35,

respectively. The numbers in parentheses were obtained by using Year 1 vs.

Year 5 data, which in effect separated the groups by an additional 4 years.
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Experiment 7

In our final experiment, we applied the technique described in

‘‘Displaying group differences’’ to the results of Experiment 5, and

specifically to the comparison between the group of ages 50–59

and the group of ages 80 and above. We chose these groups for two

reasons. First, the group differences were quite large. Second, we

can interpret the results in view of the reported age effects on the

brain (Davatzikos and Resnick, 2002; Raz et al., n.d.; Resnick et

al., 2003). Fig. 11 shows the regions which were most relevant in

differentiating between these two groups. The green areas are

centered on the location of the local maxima (they may appear

smaller or larger, depending on whether the center of the cluster is

on the slice displayed or on nearby slices). The underlying MR

image is the one used as the reference template in all experiments,

that is, the image to which all other images were spatially

normalized. Note that we detect areas that show vulnerability to

age-related differences in signal intensity as well as differences in

regional brain volumes.

To test our method for displaying group differences, we

simulated atrophy in a square, as shown in Fig. 12. The recon-

structed group difference image indeed exhibited a local maximum

in the region of simulated atrophy.
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Average ages of the four groups in Year 5 are 62.45, 68.44, 76.86 and

85.94, respectively.
Discussion

We presented a methodology for the classification of an

individual’s images into a group to which the individual is most

similar. We achieve this classification by first calculating a brain

morphological signature (BMS) via a high-dimensional shape

transformation from the individual to a template; the template

serves as a reference unit. Importantly, the mass of the RAVENS

map is preserved under such a transformation, that is, it preserves

the total amount of tissue of any structure or substructure of the

brain, by increasing or decreasing the tissue density accordingly

during compression or expansion, respectively (Fig. 3). After

significant reduction of the dimensionality of these RAVENS

maps, a supervised machine learning technique is used to classify

an individual to the group with the most similar BMS.
Fig. 8. Schematic representation of two populations with highly over-

lapping Gaussian distributions.
The main purpose of this paper was to present an integrated

methodology along with validation experiments using certain

simulated and real MR images of the brain. However, this

methodology is very generally applicable to a variety of cases

such as sex and age classification, and it can be used as an image-

based diagnostic tool. One of our goals in the BLSA study is to use

this method for the early prediction of dementia. In particular, we

will examine the utility of this approach to distinguish individuals

with mild cognitive changes who progress to dementia vs. those

who do not.

One of the most important aspects of the methodology de-

scribed in this paper is that it does not analyze image or deforma-

tion data voxel by voxel, but rather considers all voxels

simultaneously in a very high-dimensional space. As discussed

earlier, it is unlikely that shape or other image properties of

individual voxels vary so dramatically among patient populations

that they can be used for patient classification. However, when

examined collectively, the shape and image properties of all voxels

can make clear distinctions among different groups.

We would like to draw attention to the mass-preserving nature

of RAVENS maps, which guarantee that volumetric information is

preserved entirely by the mapping between the template and the

individual. In the ideal case in which shape transformation per-

fectly matches two brains, our approach relates to examining the

determinant of the Jacobian of the shape transformation (Davatzi-

kos et al., 1996), except for some important differences that were

discussed in the ‘‘RAVENS mass-preserving framework’’ of the

Methods section. However, in reality, perfect matching is difficult

to achieve, in part because of the limitations of current methodol-

ogies for deformable registration, but largely because of the

fundamental limitations imposed by the underlying anatomy. For

example, one brain might have a single sulcus, another might have

double sulci in the same place and another one might be missing

that sulcus altogether. In that case, one could not even define a set



Fig. 10. Result of self-test for two groups that provided a classification

accuracy of only 83% in leave-one-out method. In the self-test, these two

groups are completely separable. Vertical value for each point represents its

classifier function value, and shows the distance of each subject from the

separating boundary in hyperspace.

Fig. 12. The background shows a representative RAVENS map. The square

was the area in which atrophy of 20% was simulated in 20 subjects.

Applying our classification method to the resulting two groups that differed

by systematic atrophy determined the region highlighted with green to be

the most relevant region for distinguishing between the two groups, as one

would expect.

Z. Lao et al. / NeuroImage 21 (2004) 46–57 55
of rules, which an automated algorithm would need to access to

find an anatomically meaningful match. Therefore, shape transfor-

mation is inherently limited in its ability to fully represent the

morphological differences between the template and the individual,

and unavoidably loses information that is present in the individu-

al’s images but is not captured by the template warping process.
Fig. 11. Regions most representative of the difference among adults of ages 50–59

differences. (Bottom row) Points correspond to white matter differences. In additi

aging, the arrows point to hypointense regions in the white matter, which are als
Our approach guarantees that all information present in the

individual’s images is preserved. For example, if the template

has a single sulcus and the individual has a double sulci in the same

anatomical location, the registration algorithm will not be able to

find a good match at that location, but it will maintain both sulci of

the individual during warping. The volumes of these sulci can be

determined by integrating the density of the RAVENS maps around

that location in the template space.

One of the interesting results of our experiments was that, even

when a very good hypothesis is available (see Experiment 3), a

ROI-based classification method performed about the same (slight-

ly worse, in fact) as the wavelet-based method. Note that the same

classification scheme was used in both tests, that is, SVM. This is

due to the hierarchical scale-space decomposition properties of the

wavelets, which has been found advantageous in many fields.

Compared to fixed smoothing kernel methods, wavelets are able to

examine the data at various scales simultaneously. In conjunction
and adults of ages 80 and above. (Top row) Points correspond to gray matter

on to several temporal, parietal and frontal regions known to be affected by

o well known to result from aging.
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with the pattern classification step, this presumably allows the

classifier to find the dimension along, or equivalently the scale at,

which best differentiation between the two groups can be achieved.

Notably, this is achieved without increase of the dimensionality of

the search space, as would be the case when smoothing the data

with Gaussian kernels of various widths.

Pattern classification is particularly suitable as a diagnostic tool.

However, displaying group differences determined by the classifier

in an intuitive way that allows further interpretation of the results is

a difficult issue, as discussed in Displaying group differences. We

presented an approach to overcome some of the limitations

inherent in displaying population differences, which is based on

determining the local maxima of clusters that have the most

relevant information for distinguishing two groups. Improvements

of this basic technique are possible. Specifically, in constructing

difference images obtained by following the gradient of the

decision function, we assumed that all wavelet coefficients not

included in our feature vector, that is, all coefficients that were

dropped during the feature reduction step, were the same in the two

groups. This is a reasonable assumption, because these variables

are never used in classification, therefore their values are irrelevant

for classification. However, wavelet coefficients across different

scales are correlated, because they are linked, to some extent, to the

same spatial location. Taking these correlations into account might

lead to better estimates of the variables not used in our feature set

but used for reconstruction of the difference among groups via the

inverse wavelet transform.
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