METALLIC NANOPARTICLE CHAINS AS OPTICAL WAVEGUIDES

Vadim A. Markel
University of Pennsylvania
Radiology, Bioengineering, Applied Math & Computational Science
vmarkel@mail.med.upenn.edu
http://whale.seas.upenn.edu/vmarkel/

In collaboration with
Ilia Rasskazov (Siberian Federal University, Krasnoyarsk)
Andrey Sarchev (Institute for Theoretical and Applied Electrodynamics, Moscow)
Why plasmonic chains are of interest?

- Spectroscopy and sensing
- Waveguiding and optical elements
- Simple system with rich physics

1. PHYSICAL MODEL
2. SPECTROSCOPY (NON-LORENTZIAN RESONANCES)
3. DISPERSION RELATIONS
4. PROPAGATION. STEADY STATE
5. PROPAGATION. TRANSIENT PHENOMENA
6. PROPAGATION LENGTH AND FIELD LOCALIZATION
7. CURVED CHAINS
1. Physical model

\[n = 1 \quad \text{and} \quad n = N \]

NF tip operating in the illumination mode

NF tip operating in the collection mode
A few choices

<table>
<thead>
<tr>
<th>Particles</th>
<th>chains</th>
<th>Regular, linear, Infinite, quasistatic interactions</th>
<th>Substrate, host medium</th>
<th>More complex composition, disorder Curved chains</th>
<th>Far zone interaction, interference effects, localization</th>
<th>Non-receprical effects (e.g., in H-field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spheres</td>
<td>XXXXXXXXXX</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>XXXXXXX</td>
<td>X</td>
</tr>
<tr>
<td>More complicated shape</td>
<td>XXXXXXXXXX</td>
<td>X</td>
<td>X</td>
<td>XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipole approx</td>
<td>XXXXXXXXXX</td>
<td>XXXX</td>
<td>XX</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beyond DA</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum FS effects</td>
<td>Single nanoparticle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Is the dipole approximation adequate?

PRO:
1. It’s simple!
2. It allows physical insight.
3. Captures interference phenomena well (DA is not the same as quasistatics).
4. Allows to deal with complex shapes as long as the polarizability is known.
5. Is not that inaccurate for moderate separations, especially for TE polarization.
6. After all, the mathematical shapes we use are approximations, often rough.

CONTRA:
DA does break when the particles are close to touching, especially for polarization the TM polarization.
From V.A. Markel, V.N. Pustovit, S.V. Karpov et al., PRB 70, 054202 (2004)

\[\sigma_e = 4\pi kV \text{ Im} \int \frac{\Gamma(w)dw}{z-w} \]

\[z = \frac{4\pi \epsilon + 2}{3} \frac{\epsilon - 1}{\text{Drude metals}} \]

\[\frac{4\pi}{3} \frac{\omega_F^2 - \omega^2 - i\gamma\omega}{\omega_F^2} \]
The dipole approximation

\[d_n = \alpha_n \left[E_n + \sum_{m \neq n} \hat{G}(k; \mathbf{r}_n, \mathbf{r}_m) d_m \right] \]

- \(\alpha_n \) - Polarizability of the \(n \)-th particle
- \(\hat{G}(k; \mathbf{r}_n, \mathbf{r}_m) \) - Frequency-domain Green's function
- \(E_n \approx \begin{cases} \delta_{n1} & \text{Near-field tip} \\ \exp(ik \cdot \mathbf{r}_n) & \text{Plane wave} \end{cases} \)

The coupled-dipole equations in the frequency domain:

\[k = \frac{\omega}{c} \]

- \(E_n \) - external field
Spheres or spheroids, $a \leq 10\text{nm}$

$$
\frac{1}{\alpha} = \frac{4\pi}{\varepsilon_h V} \left(\nu + \frac{\varepsilon_h}{\varepsilon_m - \varepsilon_h} \right) - i \frac{2k^3}{3}
$$

ε_h is the permittivity of the host medium (a transparent dielectric or vacuum)

$\varepsilon_m = \varepsilon_0 - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$ is the permittivity of metal (given by the Drude formula)

$V = \frac{4\pi abc}{3}$ is the volume of spheroid; $k = \frac{\omega}{c}$

ν is the depolarization factor

Spheres $a > 10\text{nm}$

$$
\alpha = \frac{3i}{2k^3} \frac{m\psi_1(mR)\psi_1'(kR) - \psi_1(kR)\psi_1'(mR)}{m\psi_1(mR)\xi_1'(kR) - \xi_1(kR)\psi_1'(mR)}
$$

Spheroids: similar approximations
2. SPECTROSCOPY (NARROW NON-LORENTZIAN RESONANCES)

EXPERIMENTAL SPECTRA

Gold

$h = 320\text{nm}$

p-polarization

$\theta = 62^\circ, 64^\circ, 66^\circ, 68^\circ$

Incident plane wave

Infinite, homogeneous periodic chain ($\alpha_n = \alpha$)

$$d_n = E_0 \frac{\exp(iqx_n)}{1/\alpha - \hbar^3 S(\omega, q)}$$

$$q = k \cos \theta = \frac{\omega}{c} \cos \theta$$

The propagation constant

$$S(\omega, q) = \hbar^3 \sum_{m \neq n} G(\omega; x_n, x_m) \exp(iqx_n)$$

The dipole sum ("self-energy")
$S = S(k, q)$

If $kh = \xi$, $qh = \eta$, then

$$S_\perp = 2\xi^3 \sum_{n>0} \left[\frac{1}{\xi n} + \frac{i}{(\xi n)^2} - \frac{1}{(\xi n)^3} \right] \exp(in\xi) \cos(n\eta)$$

$$S_\parallel = 4\xi^3 \sum_{n>0} \left[-\frac{i}{(\xi n)^2} + \frac{1}{(\xi n)^3} \right] \exp(in\xi) \cos(n\eta)$$

The "\perp" dipole sum diverges logarithmically if

$$\xi \pm \eta = (k \pm q)h = 2\pi L$$

L being an integer
$\text{Re} S_\perp$ for some fixed values of frequency
Re[$S(kh,qh)$]

(a) Orthogonal (TE) polarization

(b) Parallel (TM) polarization
Experimental parameters for silver

\[a = 50\text{nm}, \quad h = 500\text{nm} \]

\[
\Delta \lambda = \frac{h}{2\pi} \exp \left[-\frac{C}{2(2\pi)^2} \left(\frac{h}{a} \right)^3 \right]
\]

\(C \sim 1 \)

$a = 45\text{nm}$

$h = 500\text{nm}$

Q_e

λ, nm
Why is the resonance non-Lorentzian?

\[
\Lambda(\omega) = \frac{f_n}{\omega - \omega_0 - \Sigma(\omega)}
\]

\[
\Sigma(\omega) \approx \Sigma(\omega_0) + \frac{\partial \Sigma}{\partial \omega} \bigg|_{\omega=\omega_0} (\omega - \omega_0)
\]

(Qasiparticle pole approximation)

But \(\frac{\partial S}{\partial \omega} \) does not exist at \(\omega=\omega_0 \)!
Narrow spectral features in extinction spectra of an infinite chain of Drudean spheres.

\[
\frac{\omega_p h}{c} = 0.1 \text{ (a), } \frac{\omega_p h}{c} = 1 \text{ (b), and } \frac{\omega_p h}{c} = 10 \text{ (c)}.
\]

"⊥" - polarization orthogonal to the chain

"∥" - polarization parallel to the chain

3. DISPERSION RELATIONS

\[h^3 / \alpha(\omega) - S(\omega, q) = 0 \ \Rightarrow \ \omega = f(q) \]
[Recall that \(k = \omega / c \)]

Is it possible to find a solution such that \(\omega, q \in \mathbb{R} \)?

Only if:

(i) \(q > k = \omega / c \)

(ii) \(\text{Im}(1/\alpha) = -2k^3 / 3 \)

Modes with \(q > k \) are called Surface Plasmon Polaritons (SPP)
What is the role of losses (both radiative and absorptive)?

A few possible approaches:

* Take real ω and seek complex q
* Take real q and seek complex ω
* Solve eqn $\text{Re} \left[\frac{h^3}{\alpha(\omega)} - S(\omega, q) \right] = 0$ for $\omega, q \in \mathbb{R}$

When losses are small, there is not much of a difference...
What is the role of particle nonsphericity?

- Nanoparticle chains have been studied almost exclusively for the case of spherical particles.
- However, nonsphericity can be expected to provide a useful additional parameter to control:
 - SPP dispersion curves
 - SPP bandwidth
 - Propagation distance
Model for the polarizability, α

$$\frac{1}{\alpha} = \frac{4\pi}{\varepsilon_h V} \left(\nu + \frac{\varepsilon_h}{\varepsilon_m - \varepsilon_h} \right) - i \frac{2k^3}{3}$$

ε_h is the permittivity of the host medium (a transparent dielectric or vacuum)

$\varepsilon_m = \varepsilon_0 - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$ is the permittivity of metal (given by the Drude formula)

$V = \frac{4\pi abc}{3}$ is the volume of spheroid; $k = \frac{\omega}{c}$

ν is the depolarization factor
Dispersion curves and group velocities for transversely polarized SPPs and different aspect ratios a/b of spheroids

Chain parameters: $h=40$nm, short semi-axis=10nm

Prolate spheroids whose axis of symmetry is perpendicular to the chain

Oblate spheroids whose axis of symmetry is parallel to the chain
Dispersion curves and group velocities for **longitudinally** polarized SPPs and different aspect ratios a/b of spheroids

Prolate spheroids whose axis of symmetry is perpendicular to the chain

Oblate spheroids whose axis of symmetry is parallel to the chain
\[
h / b = 4
\]

- \(h = 40\text{nm} \)
- \(b = 10\text{nm} \)

Graph showing the relationship between \(\frac{h\omega}{\pi c} \) and \(\frac{qh}{\pi} \). The graph includes lines for different values of \(b/a \) ranging from 0.30 to 0.36.
4. PROPAGATION. STEADY STATE

\[n = 1 \quad \text{to} \quad n = N \]

\[E \propto \exp(-i\omega t) \]

NF tip operating in the collection mode
* Incident plane wave
* Infinite, homogeneous periodic chain ($\alpha_n = \alpha$)
* First particle in the chain illuminated by an external source (e.g., NSOM tip)

$$d_n = E_0 \int_{-\pi/h}^{\pi/h} \frac{\exp(iqx_n)}{1/\alpha - h^{-3} S(\omega, q)} \frac{dq}{2\pi}$$
Simulation for a finite chain of $N=1000$ identical nanospheres

Parameters:

\[\omega = \omega_F \]
\[\frac{\gamma}{\omega_F} = 0.002 \]
\[\lambda = \frac{2\pi c}{\omega} = 10h \]
\[h = 4a \]
Effect of Ohmic Losses

\[\frac{d_n}{d_1} \]

Parameters:

\[\omega = \omega_F \]

\[\frac{\gamma}{\omega_F} \text{ varies} \]

\[\lambda = \frac{2\pi c}{\omega} = 10h \]

\[h = 4a \]
Effects of disorder

• Off-diagonal disorder (disorder in the nanoparticle positions)

We assume here that the position of the n-th particle is evenly distributed in the interval $[h(n-A), h(n+A)]$, $A<<1$

• Diagonal disorder

[A more subtle effect, not considered in this talk; see Phys.Rev.B 75, 085426 (2007)]
Off-Diagonal Disorder in the Absence of Ohmic Losses

Parameters:

\[\omega = \omega_F \]
\[\frac{\gamma}{\omega_F} = 0 \]
\[\lambda = \frac{2\pi c}{\omega} = 10h \]
\[h = 4a \]
Different Realization of Disorder at the Level $A=0.01$
Different realization of disorder at the level $A=0.02$
Non-quasistatic SPP at different levels of disorder

Let the frequency be small enough so that the ordinary SPP is not excited.
Non-quasistatic SPP at different levels of disorder (continued)

\[\frac{d_n}{d_1} \]

\[\frac{\omega}{\omega_f} = 0.984 \]

(small enough so that the ordinary SP is not excited)
Specific extinction for excitation by a plane wave \(\exp(iqx) \)
(e.g., created by the TIR, \(q \) can be larger than \(k \))
5. PROPAGATION. TRANSIENT PHENOMENA

\[n = 1 \quad \text{NF tip operating in the collection mode} \]

\[n = N \]

\[E \propto \exp \left(\left(\frac{t}{\tau} \right)^2 \right) \exp(-i\omega t) \]
Chain Parameters:
\[h = 40 \text{ nm} \]
\[b = 10 \text{ nm} \]
\[\xi = \frac{b}{a} = 0.15 \]
\[N = 5000 \]
\[\tau = \frac{h}{c} = 0.133 \text{ fsec} \]

Metal Parameters (Ag)
\[\varepsilon = \varepsilon_0 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \]
\[\lambda_p = \frac{2\pi c}{\omega_p} = 136 \text{ nm} \]
\[\gamma/\omega_p = 0.002 \]
\[\varepsilon_0 = 5 \]

Host Medium:
\[\varepsilon_h = 2.5 \]

Metal Parameters (Ag)
\[\varepsilon = \varepsilon_0 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \]
\[\lambda_p = \frac{2\pi c}{\omega_p} = 136 \text{ nm} \]
\[\gamma/\omega_p = 0.002 \]
\[\varepsilon_0 = 5 \]

Pulse Parameters:
\[\omega_0 = 0.1\omega_p \] \[[\lambda_0 = 1.36 \mu \text{m}] \]
\[\Delta t = 7.2 \text{ fsec} \]
\[\Delta\omega/\omega_0 = 0.2 \]

\[\nu_g \approx 0.58c \]

\[L = 200 \mu \text{m} \]
Pulse Parameters Different from the Previous Graph:

\(\omega_0 = 0.05 \omega_p \) \([\lambda_0 = 2.72 \mu m] \)
\(\Delta t = 14.2 \) fsec
\(\Delta \omega / \omega_0 = 0.2 \) [same as before]

(But note that special relativity Is not violated. You can ask me why.)

\(v_g \approx 1.17c \)
PROLATE
Axis of symmetry parallel to chain

OBLATE
Axis of symmetry perpendicular to chain

\[F_{N1} = \frac{|d_N|}{|d_1|} \]

\[N = 1001 \]
\[h = 24\text{nm} \]
\[b = 8\text{nm} \]
\[L = 24\mu\text{m} \]
Spheres vs Prolate and Oblate Spheroids
PROLATE

MAP drawn 10nm above the top edge of particles

b/a=0.2

OBLATE

\[\frac{|E|^2}{|E_0|^2} \]

\(<10^{-10} \quad 10^{-8} \quad 10^{-6} \quad 10^{-4} \quad 10^{-2} \quad 1<\]
7. CURVED CHAINS
Rective/active Impedance

\[\eta = \frac{Q_s}{Q_e} \]

Corner

\[\frac{b}{a} = 0.5 \]

a) X-polarization
b) Y-polarization
Prolate Spheroids Left: X, Right: Y at
FIG. 10: Electric field distribution for quarter-circle chain of oblate nanospheroids \((b/a = 0.3)\) at frequency \(\omega = 0.15\omega_p\) for X polarization. Centers of nanospheroids located on plane of observation.

\[\eta = 10^{-3} \]
CONCLUSIONS

• Plasmonic chains have promising applications in spectroscopy, sensing and waveguiding

• Theory and simulations are needed to guide the experiments and optimize design

• There is a complex interplay between the active impedance of the chain and field localization pattern.

• You can have high field localization if you are willing to heat the chain up!